Droni

Lavorare con i droni: SAPR professionali, come sceglierli, come configurarli e perché affidarsi a professionisti autorizzati.

Rilievo aerofotogrammetrico con drone: quanto mi costi?

Villaggio Vela Bianca ad Ardea: il modello 3D

La dura legge di mercato nel perenne confronto tra cliente e professionista è il pane quotidiano a volte morbido e croccante, altre volte duro e stantio che tutti noi dobbiamo mangiare ogni giorno, sperando di farlo.

Quando un'azienda o un professionista si muovono, con loro si muove tutto il portato di strumentazione, conoscenza tecnica, esperienza che sono esattamente ciò che fa la differenza tra essere professionisti e servirsi di un professionista. Un portato che ha dei costi che inevitabilmente incidono sul prezzo di un rilievo aerofotogrammetrico.

Si può sempre pensare: si ma grazie ai droni un rilievo aerofotogrammetrico posso farmelo da solo. Vado al supermercato, installo un'app gratuita, faccio processare tutto in un servizio cloud gratuito che non restituirà un risultato eccellente ma comunque idoneo alle mie esigenze e il gioco è fatto.

Certo questo atteggiamento tipico del "fai da te" può essere corretto: ma sicuri che già il costo del drone non superi quello del professionista? Se sei un geometra, un architetto, un ingegnere, che vuole mettersi in proprio, ecco un'indicazione di cosa ci vuole per essere considerati professionisti dell'aerofotogrammetria. Se invece vuoi collaborare con un professionista, questo è ciò che lui deve possedere, almeno.

Gli strumenti di base

Per operare sul campo esiste una componente strumentale minima di base senza la quale non è pensabile considerarsi professionisti dell'aerofotogrammetria. Ecco dunque un elenco di strumenti che ogni professionista dovrebbe avere:

  • Un SAPR: si spazia dalla fascia prosumer tipo DJI Phantom 4 Pro, alla fascia consumer tipo DJI Spark. Nel primo caso €1.699, nel secondo €499 IVA compresa (prezzo attualmente in promozione) + €100 di modifica per renderlo inoffensivo
  • Acquistare ulteriori batterie e supporti: €500 nel primo caso, €170 nel secondo
  • Essere registrati come operatore con SAPR presso ENAC: €94
  • Assicurazione del SAPR: ogni SAPR deve avere la sua assicurazione a termini di legge, mediamente €200/anno cadauna
  • Dispositivo di controllo del SAPR: necessario per far funzionare le app di controllo del SAPR e ricevere la telemetria del medesimo. Mediamente un buon smartphone o un buon tablet (meglio) stanno tra i €200 e i €300
  • Ricevitore satellitare GNSS L1+L2 almeno RTK: uno strumento nuovo parte da una base di almeno €6.500+IVA, si possono trovare degli ottimi usati intorno ai €3.000+IVA. Necessita di una scheda GSM con abbonamento dati (se dedicata a partire da €100/anno)
  • Abbonamento a ItalPOS o altra rete di basi GNSS regionale (se ne scriverà più sotto)
  • Target per l'acquisizione delle coordinate dei punti di vincolo del rilievo aerofotogrammetrico ai fini della correzione metrica del progetto. Si possono realizzare in vari formati e materiali (si privilegia il PVC), la spesa è spesso superiore alle €200
  • Metro e distanziometro laser: utili per misure speditive come possono essere gli infissi. Un buon distanziometro costa intorno ai €200+IVA.

Perché si parla di SAPR e non di droni? Perché l'aerofotogrammetria è un'operazione specializzata, e in quanto tale può essere condotta soltanto con un drone validato da ENAC, che lo trasforma in SAPR. Quindi andare al supermercato, comprare il drone e volare, è illegale e può comportare pesanti sanzioni, anche penali.

Qualora si voglia optare per il DJI Phantom 4 Pro, è imprescindibile quanto segue:

  • Documentazione per la registrazione CRO del drone o comunque per la dichiarazione: si va da €80 a €500
  • Attestato di volo: per la classe Vl/MC (very light multicopter, per SAPR dal peso al decollo inferiore a 4 Kg), il costo per operare in ambienti CRO (critici, in sostanza quando ci sono zone pubbliche e persone vicino, gli ambienti urbani per definizione) si aggira intorno ai €1.500 e comporta almeno 2 esami, ai quali si aggiunge la visita medica aeronautica che si aggira intorno ai €100. Tutto questo deve essere rinnovato ogni 5 anni.
  • Strumenti per la delimitazione dell'area delle operazioni: quando si opera in missioni CRO, l'area delle operazioni deve essere delimitata. L'attrezzatura idonea si aggira intorno ai €200 per la delimitazione di aree non troppo vaste.

Gli strumenti utili da possedere

L'elenco precedente comprende il minimo indispensabile. C'è poi altro che bisogna possedere? Si, è l'elenco seguente:

  • Stazione totale: a volte può essere utile per integrare il rilievo con GNSS. Una buona stazione, sia nuova che usata, parte da almeno €3.500+IVA.
  • Ricevitore GNSS in configurazione base+rover: non sempre si può operare in zone con sufficiente copertura GSM. Non essendo possibile lavorare in configurazione NRTK sarà necessario valutare l'acquisto o di un sistema base+rover o di una base da collegare al ricevitore posseduto (ma soltanto se quest'ultimo è predisposto). Servono almeno altri €5.000/€6.000+IVA.
  • Casco e DPI: se si lavora in ambienti di cantiere, la legge obbliga ad indossare idonei dispositivi di protezione. Si va dall'elmetto di sicurezza, ai guanti, alle scarpe antinfortunistica financo agli occhiali di protezione. €100
  • Notebook per il backup dei dati acquisiti. Si può fare anche sul cellulare (soprattutto se Android) tramite apposito cavo USB OTG. Quasi tutte le app consentono di scaricare sul dispositivo le fotografie scattate. Ma è sempre bene avere un PC in macchina per ogni evenienza. Qualcosa di discreto intorno ai €1.200.
  • Chiodi topografici e mazzetta per piantarli e materializzare a terra i punti fissi: intorno ai €100.
  • Color checker: se scattate le fotografie in formato RAW può essere utile avere una color checker della X-Rite che vi aiuterà a rendere più aderenti alla realtà i colori catturati sotto quella specifica condizione di luce. Il suo uso è necessario in particolari contesti come le riprese di Beni Culturali. €100.
  • Anemometro: per valutare la velocità del vento. Le missioni CRO obbligano a non volare se il vento supera una certa velocità, ricordando che più si sale in quota, più il vento aumenta rispetto al suolo. €30.
  • Coppia di radio Walkie-talkie: utile per comunicare tra operatori sul campo, a partire da €30.

Fuori elenco si può citare un laser scanner 3D: in molte situazioni, soprattutto nel caso di rilievi architettonici, sarà necessario integrare la nuvola di punti ottenuta da aerofotogrammetria con la nuvola di punti ottenuta da strumenti topografici, per una serie di motivazioni che sarebbe troppo lungo spiegare in questo articolo. Il minimo è un Leica BLK360, a partire da €16.000+IVA, altrimenti un classico Faro classe S150 ma si può partire facilmente da cifre vicine ai €50.000+IVA. A questi strumenti si deve aggiungere il software dedicato, dai €400 e rotti di Autodesk Recap Pro, agli oltre €5.000+IVA di alcuni software proprietari dedicati.

Nora: perimetro area buffer aerofotogrammetria con drone

E in ufficio?

Quella elencata è la strumentazione da campo, ma poi bisognerà elaborare i dati acquisiti in ufficio per restituire un rilievo che sia tale. Cosa serve? Quelle di seguito elencate sono da includere nelle spese imprescindibili, sarebbe come comprare una macchina e non metterci la benzina dentro. Non camminerà.

  • Una buona workstation sufficientemente performante: intorno ai €2.000
  • Un monitor di classe fotografica (altrimenti della color checker menzionata in precedenza non saprete che farvene), almeno 24". Un 99% di copertura spazio Adobe RGB parte da almeno €400
  • Un NAS per l'archiviazione dei dati e relativi dischi fissi: almeno €500

Poi è la volta dei software:

  • Software CAD: il più comune è Autodesk AutoCAD, con costo a partire da €2.100/anno (o mensile da €260) ma in qualche caso ci si può accontentare di software gratuiti o meno costosi, da NanoCAD a DraftSight fino a TopoCal. Tra i migliori per lavorare con progetti aerofotogrammetrici c'è Analist Cloud 2019, a partire da €497/anno+IVA
  • Software di fotogrammetria: per l'elaborazione del rilievo aerofotogrammetrico, tra i più famosi Agisoft Photoscan, intorno ai €3.000+IVA
  • Software di elaborazione fotografica: per migliorare la radiometria e il colore delle immagini in postproduzione, i più famosi sono Adobe Photoshop Lightroom CC e Photoshop CC a partire da €10/mese+IVA.
  • Software per la strumentazione topografica: a volte è fornito con lo strumento, altre volte va acquistato a parte, e si possono spendere facilmente anche €1.500+IVA

E le tasse?

Tasto dolente, nel prezzo al cliente finiscono anche le tasse:

  • Se ho la fortuna di avere una casa dove storno una stanza per l'ufficio, pagherò soltanto le bollette aziendali, comprensive di TARSU. I sistemi infomatici bevono corrente quando elaborano il progetto, quindi elaborare un progetto costa.
  • Se non ho questa fortuna, dovrò anche pagare un affitto, il mobilio, e le bollette.
  • Se ho fatto la malsana scelta di acquistare l'ufficio, dovrò pagare l'IMU, il mobilio e le bollette.
  • Se ho una partita IVA, che sia in forma di azienda o di ditta individuale, dovrò pagare le tasse sul compenso: le stime più prudenti parlano del 50%.

Manca qualcosa? Quando si parla di tasse la risposta è sempre sì.

La rete GNSS

In precedenza abbiamo nominato ItalPOS. Si tratta di un servizio fornito da una rete RTK il cui compito, grazie alla rete di stazioni GNSS permanenti installate sul territorio, è quello di fornire alla stazione GNSS rover (il tuo strumento) le correzioni di rete necessarie, consentendoti di risparmiare tempo per il setup di una propria stazione in campagna.

ItalPOS è un servizio a pagamento fornito da Leica Geosystem, azienda parte del gruppo Hexagon leader mondiale nel campo degli strumenti topografici.

Accanto a ItalPOS quasi tutte le Regioni italiane hanno messo un piedi una propria rete di stazioni GNSS permanenti: alcune sono libere e gratuite (nel senso che tutti possono iscriversi al servizio e utilizzarlo), come la Rete Lazio e la Rete Abruzzo; altre sono pagamento, come la Rete Sardegna; altre ancora richiedono l'iscrizione all'Albo, come la Rete Campania. Se operate soltanto nel vostro territorio, quest'ultima soluzione è sicuramente da preferire, in termini soprattutto di costi.

Qualora invece vi spostate sul territorio italiano, la scelta ItalPOS è quasi obbligata: si parte da €80+IVA/mese per arrivare ai €330+IVA/anno.

La cosa importante da sapere è che tanto più sarà vicina la stazione permanente di riferimento tanto più la correzione dello strumento sarà precisa e accurata. È buona norma quando si lavora in campagna (dunque non attorno alle grandi città) fare un controllo preventivo di dove sia posizionata la stazione di riferimento perché la distanza da essa può determinare la scelta del mount-point in un sistema RTK.

Il vostro strumento dovrà essere compatibile con i sistemi di correzione in tempo reale, e andrà privilegiato un mount-point NRT nel caso di correzione tramite una singola stazione molto vicina (si dice entro 15 km in linea d'aria); iMax o MAX (quest'ultima la migliore in assoluto) nel caso di correzione di rete.

Privernum: restituzione aerofotogrammetrica da drone

La nostra strumentazione

Tanto per far rendere conto di come si muove la nostra azienda, ecco un riepilogo del nostro parco attrezzatura per rilievi aerofotogrammetrici:

  • DJI Phantom 4 Pro e DJI Phantom 3 Pro di riserva, autorizzati ad operare in scenari CRO
  • DJI Spark registrato come inoffensivo <300 grammi
  • iPhone e iPad Pro 2018 per il controllo dei SAPR
  • Il necessario per delimitare l'area delle operazioni: nastri, colonnine, segnaletica, etc.
  • Ricevitore GNSS GeoMax Zenith20 RTK GSM+UHF e accessori dedicati
  • Ricevitore GNSS Leica GX1230 in configurazione base+rover
  • Stazione totale Sokkia SRX2 motorizzata e accessori dedicati
  • Distanziometro laser
  • Casco e dispositivi DPI a norma di legge
  • X-Rite Color Checker
  • Target per l'acquisizione dei GCP a terra
  • Workstation, computer portatile, hard disk esterni, NAS, software e app varie

La formazione

Direte: come non è ancora finita? Purtroppo no, perché per operare seriamente nel campo dei rilievi aerofotogrammetrici servono specifiche competenze e conoscenze:

  • Una laurea all'Università o almeno la formazione tecnica di base di un Geometra (non sempre sufficiente) per operare nel campo della topografia. Non vi verrà insegnato il mestiere ma ad applicare con metodo le conoscenze teoriche
  • L'abilitazione professionale per coloro ai quali è richiesta (obbligatoria almeno per Ingegneri, Geometri, Geologi, Architetti, Agronomi e Forestali)
  • Aggiornamento professionale, che sia obbligatorio o meno, consente di rimanere aggiornati e confrontarsi con gli altri professionisti per crescere
  • L'esperienza sul campo maturata nel corso del tempo, frutto di successi ed errori che non troverete nei libri o nei tutorial

Tutto questo ha un costo che può essere e deve essere quantificato in qualche modo. Non può essere considerato un mero investimento a perdere perché senza non posso operare. Saper fare un buon rilievo aerofotogrammetrico richiede che il professionista sia ferrato nelle seguenti materie:

  • Saper pianificare la missione
  • Saper pianificare il volo settando i parametri corretti in base alla richiesta del committente e al risultato atteso
  • Saper pilotare l'APR manualmente in caso di necessità
  • Saper eseguire missioni in modalità manuale, magari per rilevare elementi verticali o per evitare ostacoli
  • Saper effettuare un rilievo topografico per acquisire i GCP
  • Saper integrare il rilievo topografico con una stazione totale e conoscere dunque la teoria sulle poligonali chiuse
  • Saper usare un software CAD
  • Saper usare un software GIS
  • Saper usare un laser scanner 3D e saper integrare i dati provenienti da strumentazioni topografiche diverse
  • Conoscere la cartografia italiana
  • Conoscere la cartografia aeronautica
  • Conoscere la fotografia digitale (dalle tecniche di scatto a quelle di post-processamento per migliorare la radiometria delle immagini a fini fotogrammetrici)
  • Conoscere il necessario utile a operare in determinati scenari: essere competenti nel campo dei Beni Culturali oppure conoscere i fenomeni naturali gravitativi
  • Conoscere quand'è il momento di dire NO a un lavoro che non si sa fare o che rischia di essere fortemente sottopagato per la sua difficoltà

La committenza ha uno strumento potente per la verifica della professionalità dell'operatore: se quest'ultimo è in grado di spiegare in modo chiaro e semplice quello che sta facendo e che farà al committente, che non è tenuto a conoscere tale materia. Se non è capace di spiegare la teoria, non è nemmeno in grado di metterla in pratica con profitto, ergo non è un professionista.

Per concludere: il conto della serva

Detto quanto, se si vuole intraprendere la carriera da rilevatore con sistemi APR (con la certezza che solo di questo non si campa), la spesa minima da fare qualora di parta da zero con un DJI Spark reso inoffensivo ammonta a...

--> !!!   €12.500   !!! <--

È una stima non pensata per spaventare qualcuno. Questo costo si può fortemente abbattere se l'operatore di APR decide di affidarsi al noleggio strumentale (se si sanno usare questi strumenti), oppure chiedendo ad una terza parte di occuparsi del rilievo topografico. Se il tuo ufficio è nei dintorni di Roma, noi siamo a disposizione.

Quando dunque un cliente spera che un rilievo aerofotogrammetrico venga a costare €50+IVA, dovrebbe mettersi una mano sulla coscienza e capire che sta chiedendo al professionista di lavorare per €5: nemmeno la famosa donna delle pulizie lavora per così poco. E quando il professionista chiede €250+IVA, il cliente sta pagando più di €300 ma al professionista vanno in tasca si e no €100.

Tutto questo sta dietro un'attività seria e professionale di rilievo aerofotogrammetrico.  Quando un rilievo viene quotato €50 potete mettere la mano sul fuoco che è un rilievo in forma abusiva: e quando viene fatta un'operazione specializzata con drone senza le necessarie qualifiche, a rischiare pesante è anche il committente.

Siete dunque sicuri che un rilievo aerofotogrammetrico sia davvero alla portata di tutti?

SAPR: obbligo di verifica dell'idoneità tecnico-professionale

I nostri tutorial sull'aerofotogrammetria

Se sei ancora curioso, come speriamo, di conoscere/approfondire l'argomento, nel nostro blog sono presenti alcuni tutorial sul tema che ti consentiranno di prendere visione di come funzioni un classico processo di rilievo aerofotogrammetrico, dalla pianificazione all'acquisizione, dall'elaborazione alla post-produzione.

Aerofotogrammetria con drone e Agisoft Photoscan. Un'introduzione (parte 1)

Posted by Archeo Staff in Droni, Topografia, 0 comments

Divieto di volo per i SAPR in Parchi e Riserve naturali

Divieto sorvolo parchi pubblici

Cartografia delle aree SIC-ZSC-ZPS tratta dal Portale Cartografico Nazionale: in molte di queste aree vige il divieto di sorvolo per i velivoli a motore. In verde le aree indicate sulla cartografia aeronautica AIP

Primavera, Estate, voglia di andare al mare, in montagna, a fare gite fuori porta, spesso in compagnia del nostro amico drone. Siamo piloti autorizzati, in perfetta regola e in piena legalità, qual'è il problema?

Se come noto il sorvolo delle spiagge a droni autorizzati, ergo a SAPR, è disciplinato dalla famosa RAIT.5006 che impone il divieto dal 1 giugno al 30 settembre nella fascia di 100 metri in/out dalla linea di costa (ma non agli aeromodelli, salvo che questi possono volare soltanto se la spiaggia è fuori da CTR e non vi è anima viva, difficile in estate), più complesso è il tema legato alle bellezze naturali, che spesso potrebbero avvantaggiarsi di riprese dall'alto per la promozione del territorio e del turismo responsabile.

Come noto il volo dei SAPR è disciplinato da apposito Regolamento, giunto alla edizione 2 Emendamento 4 del 21 maggio 2018, ma non solo! In quanto un SAPR è a tutti gli effetti un aeromobile, ad esso si applicano anche il Codice della Navigazione e tutte le Regole dell'Aria e le varie discipline che coinvolgono gli aeromobili "classici" (aerei, elicotteri, etc.), a cominciare dalla cartografia aeronautica pubblicata dall'ENAV e nota come AIP.

Ma l'ENAC, in una posizione del sito scollegata dal mondo SAPR, e inserita nell'area Ambiente, ricorda quanto segue:

Nelle aree protette è vietato il sorvolo di velivoli non autorizzati

L'assunto è basato sulla Legge 6 dicembre 1991, n. 394, nota come Legge Quadro sulle aree protette, che all'art. 11 "Regolamento del parco" affida proprio agli Enti predisposti la regolamentazione interna, e al comma 3-h stabilisce che «è vietato il sorvolo di velivoli non autorizzato, salvo quanto definito dalle leggi sulla disciplina del volo.»
E infatti dice ENAC:

Le misure di salvaguardia adottate sono contenute nei regolamenti delle aree protette, predisposti a cura degli enti responsabili della gestione dell'area ed approvati dal Ministero dell'Ambiente e della Tutela del territorio.

Purtroppo questa dizione di ENAC si traduce nel fatto che il volo dei SAPR è disciplinato in maniera differente in ogni Regione e a volte anche in maniera differente per ogni Parco. Fortunatamente ENAC ha compilato un file Excel (non aggiornatissimo e non sempre corretto ma ottima base di partenza) nel quale ha messo insieme tutte le aree naturali, con la relativa legge di istituzione e le relative misure adottate per il divieto di sorvolo. Ciò che non si evince da tale file è che tutte le aree sono protette in base alla legge 394/1991, anche quelle che non hanno uno specifico regolamento a tal proposito.

L'immagine in testa all'articolo mostra la complessità della materia. L'Italia è pervasa, grazie alla bellezza del nostro paesaggio, da centinaia di aree ZPS (Zone di Protezione Speciale), ZSC (Zone Speciali di Conservazione) e SIC (Siti di Interesse Comunitario), molte delle quali anche ANPIL (Area naturale protetta di interesse locale): lo stesso Ministero dell'Ambiente ci informa che coprono il 19% dell'area terrestre e il 4% dell'area marina nazionali. E molte contengono le ben note Oasi protette del WWF.

Tutto deriva, come sempre, dalle norme comunitarie per la protezione della biodiversità, in particolare la Direttiva 92/43/CEE "Habitat" e la Direttiva 2009/147/CE "Uccelli" che hanno dato origine al progetto Natura 2000.

Ed è proprio su questo che bisogna ragionare: ancorché l'area Parco non fosse soggetta a divieto di sorvolo, resta il fatto che se quel Parco esiste è perché qualcosa bisogna proteggere, in particolare la fauna che vive nell'habitat a lei dedicato. Soprattutto nei periodi di migrazione e riproduzione, andrebbe evitato (ancorché non vietato) il sorvolo a bassa quota che è decisamente disturbante.

Il volo e le relative operazioni di ripresa vanno preventivamente autorizzate, ed è bene affidarsi agli Enti preposti alla tutela per sapere se la zona di volo non interessa qualche area sensibile (dedicata ad es. alla nidificazione o al letargo di specie protette, etc.). Sul sito parks.it sono presenti tutti i contatti e i relativi siti internet per contattare le aree naturali.

Un esempio dalla Liguria

Per entrare nel concreto della norma, facciamo l'esempio della Regione Liguria.

In Liguria esiste una legge regionale recante norme sul divieto di Sorvolo e atterraggio di velivoli a motore: è la R.R. 15 dicembre 1993, n. 4. All'art. 3 leggiamo:

Sulle aree di cui all'articolo 2, ferme restando le vigenti disposizioni legislative e regolamentari nazionali ed internazionali in materia di disciplina del volo, è vietato il sorvolo da parte di velivoli e apparecchi a motore ad un'altezza dal suolo inferiore a 1500 FT (450 mt.)

Molti dei Parchi citati in questa legge sono confluiti nella cartografia AIP, quindi sul divieto di sorvolo non v'è dubbio. Ma il caso del PNR (Parco Nazionale Regionale) di Portovenere esula dalla cartografia AIP, eppure andando a leggere nel Regolamento del Parco, troviamo il Regolamento per il Sorvolo dell'Area Parco approvato con Deliberazione del Consiglio Comunale n. 25 del 31 Maggio 2011. In esso all'art. 1 si legge:

Ai sensi dell’art.42, comma c) della L. R. 12/95 “Riordino delle aree protette” nelle aree protette sono vietati l’atterraggio il decollo e il sorvolo a bassa quota di velivoli non autorizzati secondo quanto disposto dall’apposito regolamento (Regolamento Regionale 4/93)

Dunque una legge regionale che istituisce un'area protetta in base a una Legge dello Stato e che demanda all'Ente preposto alla sua salvaguardia specifici Regolamenti per il sorvolo...

Esempi come questo se ne potrebbero fare a bizzeffe: dalla L.R. n. 35 del 16/11/1999 della Valle d'Aosta, alla L. R. n. 29 del 06/10/1997 del Lazio. La confusione regna sovrana in Lombardia, dove è vietato il sorvolo della R. N. R. Monticchie così come stabilito dalla D.C.R. IV/1177 del 28/7/1988 e ancora niet per la Mon. Nat. Garzaia di S.Alessandro per la D.C.R. IV/250 del 14/02/1994. Addirittura nel Lazio il sorvolo della Riserva Naturale Lago di Vico è, almeno dal 2017, «soggetto [...] ad espressa autorizzazione che può essere concessa esclusivamente per motivi scientifici o di monitoraggio ambientale». Quindi niente selfie tra amici con lo Spark.

In conclusione

Finché permarrà l'equivalenza SAPR = Aeromobile (a Pilotaggio Remoto) in base all'art. 743 del Codice della Navigazione ogni operatore, anche quello dei cd trecentini che teoricamente liberalizzerebbero la materia, è soggetto al completo rispetto di tutte le norme che disciplinano il volo, sia quando emanate direttamente da ENAC sia quando emanate dallo Stato.

Quando sapete di dover volare all'interno di un'area protetta, parco o riserva che sia, il buon senso deve imporre la verifica che quell'area non sia soggetta a divieti di sorvolo (e per questo una semplice controllata alla cartografia aeronautica AIP non basta) e il tenere a mente che quell'area è protetta per qualcuno, e quel qualcuno di certo non è l'operatore di APR. In ogni caso e comunque partire dall'assunto che tutte le aree naturali discendono dalla legge 394/1991 e sulla base di questa in tutte queste aree vige il divieto di sorvolo.

Quanti professano che l'operatore di SAPR è soggetto unicamente ed esclusivamente alla cartografia AIP e agli specifici regolamenti ENAC e tutto il resto non gli compete, devono rivedere la loro posizione: spesso basta una telefonata o una email, entrambe semplici e veloci. Quasi tutti i Regolamenti dei Parchi e delle Riserve che disciplinano il divieto di sorvolo, applicano anche il regime sanzionatorio del sequestro del velivolo.

Condividiamo questa nostra posizione nell'assoluta certezza di avere ragione, coadiuvati da conferme dirette. Chiunque volesse verificare di persona può contattare l'ENAC Direzione Regolazione Aeroporti e Spazio Aereo all'indirizzo email aeroporti DOT spazioaereo AT enac DOT gov DOT it

Approfondimenti

ENAC: elenco delle leggi nazionali di rilievo per le attività dell'Enac, dove si menziona la Legge 6 dicembre 1991, n. 394

Legge quadro sulle aree protette Legge 6 dicembre 1991, n. 394

Pagina ENAC sul Patrimonio Naturale

Rete Natura 2000 - Ministero dell'Ambiente

Parco Naturale di Portovenere: Leggi e Regolamenti

Parks.it, il Portale dei Parchi Italiani, con mappa interattiva

Visualizzazione WebGIS del Portale Cartografico Nazionale: si può caricare la cartografia delle aree naturali e verificare se le coordinate di volo ricadono all'interno di un'area protetta (funziona bene con Firefox)

Posted by Archeo Staff in Droni, 0 comments

HOW TO: aerofotogrammetria con drone e Pix4Dmapper. Introduzione

Aerofotogrammetria con drone e Pix4Dmapper

La fotogrammetria, letteralmente "misurare con la luce" (dal greco), è una tecnica di rilevamento che consente l'acquisizione 3D ovvero le caratteristiche geometriche di un oggetto attraverso il processamento congiunto di 2 o più immagini che lo ritraggono da posizioni differenti.

Per tutto ciò che viene dopo questo incipit rimandiamo alla prima puntata di questo tutorial: questa serie di HOW TO sull'aerofotogrammetria con drone ha una base comune nella storia e nella tecnica di acquisizione delle immagini, essendo il software solo la parte che entra al momento dell'elaborazione del dato. Ripartiremo pertanto direttamente dallo step 5.

HOW TO: aerofotogrammetria con drone e Agisoft Photoscan. Introduzione

Pix4Dmapper workflow

Configurazione di Pix4Dmapper Discovery

La versione demo di Pix4Dmapper è chiamata Discovery: include tutte le caratteristiche della versione completa, permettendoti di apprendere da subito le funzionalità di Pix4Dmapper. Le uniche limitazioni riguardano il blocco dell'esportazione e la disabilitazione della generazione dell'ortofoto. Disponibile solo per Windows a 64 bit.

Al momento in cui scriviamo, la versione disponibile è Pix4D Desktop 4.2.26 rilasciata il 13 aprile. A differenza di Photoscan, la filosofia di Pix4D è diversa: il software si divide in moduli, che sono 4, ognuno con specifici parametri per applicazioni determinate. Pix4Dmapper si occupa di mappatura; Pix4Dbim si occupa di documentare il costruito a fini BIM; Pix4Dag è pensato per l'agricoltura di precisione, ed è ottimizzato per camere multispettrali; Pix4Dmodel è dedicato alla generazione di modelli 3D da condividere online. Ogni software ha dunque differenti potenzialità, ed è possibile acquistarlo sia in forma perpetua, che con una sorta di noleggio che può essere sia mensile che annuale. Esiste anche in questo caso la versione Educational, ad un prezzo scontato.

Per scaricare il programma è necessario registrarsi sul portale di Pix4D: le credenziali saranno necessarie anche per attivare il software:

Una volta scaricato il software, installiamolo e avviamo l'applicazione. Poiché nel vostro account non avete registrato nessun acquisto, il software avviserà di essere in modalità Discovery. Se è la prima volta che utilizzate il programma, è possibile attivare la versione Trial per 15 giorni, che vi offre funzionalità complete del programma.

Aerofotogrammetria con drone e Pix4Dmapper Discovery
Pix4Dmapper
Professional drone-based mapping, purely from images
260+iva
1 mese

Noleggia Pix4Dmapper da utilizzare per 30 giorni consecutivi!

Desktop + Cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un mese!

Licenza per 2 PC

Pix4Dmapper
Professional drone-based mapping, purely from images
2600+iva
1 anno

Noleggia Pix4Dmapper da utilizzare per 12 mesi consecutivi!

Desktop + Cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 2 PC

Pix4Dmapper
Professional drone-based mapping, purely from images
6500+iva
sempre

Acquista la licenza Permanente di Pix4Dmapper!

Desktop + Cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 2 PC

Pix4Dbim
Documenting and measuring construction sites from an aerial perspective
399+iva
1 mese

Noleggia Pix4Dbim da utilizzare per 30 giorni consecutivi!

Desktop + cloud (elaborazione controllata)

Supporto e Aggiornamenti inclusi per un mese!

Licenza per 2 PC

Pix4Dbim
Documenting and measuring construction sites from an aerial perspective
3990+iva
1 anno

Noleggia Pix4Dbim da utilizzare per 12 mesi consecutivi!

Desktop + cloud (elaborazione controllata)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 2 PC

Pix4Dbim
Documenting and measuring construction sites from an aerial perspective
7900+iva
sempre

Acquista la licenza Permanente di Pix4Dbim!

Desktop + cloud (elaborazione controllata)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 2 PC

Pix4Dag
Drone mapping software for precision agriculture
129+iva
1 mese

Noleggia Pix4Dag da utilizzare per 30 giorni consecutivi!

Desktop + cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un mese!

Licenza per 1 PC

Pix4Dag
Drone mapping software for precision agriculture
1299+iva
1 anno

Noleggia Pix4Dag da utilizzare per 12 mesi consecutivi!

Desktop + cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 1 PC

Pix4Dag
Drone mapping software for precision agriculture
2890+iva
sempre

Acquista la licenza Permanente del software Pix4Dag!

Desktop + cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 1 PC

Pix4Dmodel
Shareable 3D models from drone images
49+iva
1 mese

Noleggia Pix4Dmodel da utilizzare per 30 giorni consecutivi!

Desktop + cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un mese!

Licenza per 1 PC

Pix4Dmodel
Shareable 3D models from drone images
499+iva
1 anno

Noleggia Pix4Dmodel da utilizzare per 12 mesi consecutivi!

Desktop + cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 1 PC

Aerofotogrammetria step 5: processamento di immagini

Pix4Ddiscovery si avvia con un'interfaccia neutra che presenta la possibilità di avviare un nuovo progetto, caricare un progetto demo dal sito di Pix4D, aprirne uno esistente, oppure cliccare sui progetti più recenti elaborati con il software. Come dice la didascalia stessa dell'icona, cliccando su Nuovo progetto... si avvierà la procedura guidata per creare un nuovo progetto.

La schermata che si apre richiede che vengano scelti un nome, una cartella di salvataggio e un tipo per il nuovo progetto, che consiste o nella scelta di un nuovo progetto o nella possibilità di unificare progetti esistenti. Inseriti i dati richiesti procediamo su successivo, laddove viene richiesto di aggiungere i dati da elaborare. Possiamo selezionare le immagini, selezionare una cartella (a quel punto il software caricherà tutte le immagini contenute nella cartella), o anche un video (il programma di occuperà di estrarre i frame a passo definito). Scelti i nostri dati vedremo l'elenco di quanto il software andrà ad elaborare: possiamo premere su successivo.

La schermata che si attiva ora è molto importante: qualora una, più o tutte le immagini contengano nel dato EXIF le proprietà di latitudine e longitudine, il software riconoscerà i valori, indicando anche a quale Datum appartengono le coordinate. Il Datum è un sistema geodetico che descrive in termini matematici la superficie della Terra. Poiché il nostro pianeta non è uno sferoide ma un geoide, avere a disposizione soltanto le 2 coordinate non vi dice dove vi trovate, poiché è necessario sapere in quale Datum sono espresse, dal momento che esistono vari Datum a seconda delle esigenze. Nel caso dei dati ottenuti da droni, si parla di geodesia satellitare con datum tridimensionale a orientamento globale, ovvero valido per tutta la Terra.

I dati EXIF riportano anche il modello di camera che ha scattato le foto, e anche questo può essere riconosciuto dal software, il quale associerà le immagini ad un modello di camera precaricato, di cui cioè è stato creato un profilo standard. Nel nostro caso il software già sa che, avendo noi acquisito i dati con un Phantom 4, il modello di camera è FC330 con dimensione immagini di 4000x3000, una determinata dimensione del sensore e predefinite distorsioni radiali e tangenziali, che sono i valori necessari a risolvere le equazioni di collinearità per il matching automatico descritte nella prima puntata di questa serie. Possiamo procedere con successivo.

Aerofotogrammetria con drone e Pix4Dmapper: caricamento immagini

Al Datum che ci descrive la superficie terrestre bisogna abbinare un sistema di coordinate, che consente di definire la posizione di un punto, ovvero geolocalizzare. La schermata che si è ora aperta vi permette di selezionare il sistema di coordinate di output: il software è tendenzialmente in grado di riconoscerlo da solo sulla base delle coordinate di latitudine e longitudine presenti nei dati EXIF. Per risolvere inoltre la posizione sopra la superficie terrestre, viene utilizzato un modello geopotenziale, ovvero un modello che misura e calcola gli effetti del campo gravitazionale.

I droni DJI tendenzialmente utilizzano il modello EGM96, che infatti il software riconosce indicandovi che state lavorando con Datum WGS84, con coordinate UTM zone 32N e MSL (Mean Sea Level) EGM96. Questi dati andranno armonizzati con i dati ottenuti da strumentazione terrestre di tipo GNSS, con i quali verranno raccolti i valori GCP per la correzione metrica del progetto.

Cliccando su successivo si arriva all'ultima schermata del progetto, nella quale dovete selezionare le Opzioni di elaborazione del modello.

Qui il programma offre una serie di impostazioni predefinite che possono essere utili per pianificare velocemente la missione con parametri adeguati allo scopo: nulla vieta che si possano cambiare successivamente, ma è una buona base di partenza, soprattutto per chi è agli inizi. Abbiamo 3 categorie: Standard, Rapida e Avanzata. La Standard comprende la generazione di mappe e modelli 3D e un progetto di agricoltura di precisione con camera multispettrale; la Rapida prevede gli stessi progetti ma, come dice il nome, con parametri di risoluzione bassi per privilegiare la velocità di calcolo, ottimi ad esempio quando sul campo si vuole un rapido controllo del lavoro fatto; Avanzata, che prevede elaborazioni professionali nel campo dell'agricoltura di precisione e del rilievo con termocamere (profili basati su Flir Tau 2 e thermoMAP). Cliccando sulle varie voci nel pannello di sinistra si apriranno in quello di destra i rispettivi parametri, con indicazioni sulla tipologia di scena, output generati di esempio, indicazioni su qualità e velocità di elaborazione.

In basso a destra della finestra è presente l'opzione Inizia elaborazione adesso: flaggandola e cliccando su fine il programma elaborerà immediatamente con i parametri prescelti, oppure si può accedere al pannello principale per ulteriori impostazioni.

Aerofotogrammetria con drone e Pix4Dmapper: opzioni di elaborazione

Aerofotogrammetria con drone e Pix4Dmapper: opzioni di elaborazione

L'interfaccia di Pix4Ddiscovery si presenta spartana: sulla colonna di sinistra, la toolbar di vista, con la quale muoversi tra i vari dati elaborati. In alto la consueta barra di menu con tutti i comandi, che sovrasta la barra degli strumenti dove da notare sono l'editor di proprietà immagine e la finestra per la gestione dei GCP, dove andremo a inserire i punti per la correzione metrica acquisiti con strumentazione terrestre.

In basso troviamo il pannello di elaborazione: sono già checkati perché selezionati da un predefinito le task 1. Elaborazione Iniziale e 2. Nuvola di Punti e Mesh. In questo modo, avviando l'elaborazione, il programma si preoccuperà di arrivare al modello 3D finito senza altre attività da parte dell'utente. Per ora teniamo selezionata soltanto l'attività 1.

Al centro, vediamo invece aprirsi una vista satellitare con una serie di punti rossi: questi ultimi rappresentano le coordinate geolocalizzanti delle foto così come acquisite dal drone e salvate nei dati EXIF. Il software fornisce subito la vista di dove si è svolto in lavoro, ed è possibile cambiare tra vista mappa e vista appunto satellitare. Una funzione molto comoda che facilita il lavoro d'inquadramento del volo e consente di capire subito, ancor prima di elaborare il progetto, se nel nostro piano di volo qualcosa è andato storto e dove intervenire immediatamente per "tappare il buco".

Aerofotogrammetria con drone e Pix4Dmapper: interfaccia

Quando verrà avviata l'elaborazione, ogni pallino rosso sulla mappa si colora di verde, ad indicare che la prima fase di ricerca tie points è stata completata per quell'immagine. In seguito ogni pallino verde cambierà colore in un verde più chiaro a indicare che la fase di calibrazione è stata completata per quell'immagine. Al termine dell'elaborazione iniziale il programma genera un dettagliato report che, se letto attentamente, è in grado di fornirvi numerose indicazioni sulla qualità dell'acquisizione e del dato processato. Data la complessità del documento, rimando il lettore all'apposito Quality Report Help redatto dal supporto di Pix4D.

Prima di avviare però la fase 1, scopriamo qualcosa in merito ai parametri di elaborazione, premendo sul pulsante Opzioni di Elaborazione nell'angolo in basso a sinistra, evidenziato da un ingranaggio. Nella finestra che si apre, andiamo subito a cliccare in basso sul check della voce Avanzate per attivare le tab con i parametri appunto avanzati.

Il primo pannello è quello Generale: offre le opzioni di base per elaborare le immagini. La scelta è fra completa, rapida e personalizzata:

Aerofotogrammetria con drone e Pix4Dmapper: elaborazione iniziale

Completa imposta automaticamente l'immagine alla sua risoluzione originale; Rapida imposta automaticamente l'immagine alla sua risoluzione più bassa; Personalizzata vi consente di scegliere tra 5 parametri, che vanno da dimensione doppia dell'immagine fino ad un'immagine scalata a 1/8 della sua dimensione originale. Naturalmente, più pixel da analizzare più tie points possono essere estratti, a fronte tuttavia di un maggior tempo di analisi. L'opzione doppia è consigliata per immagini piccole (ad es. se avete estratto dei frame da un video FullHD), l'opzione 1/2 per progetti che contengono centinaia di immagini, le opzioni 1/4 e 1/8 sono consigliate per progetti con migliaia di immagini che abbiano tra loro un elevatissimo grado di sovrapposizione.

Il secondo pannello riguarda la corrispondenza tra immagini: Pix4D vi offre l'opportunità di aiutare il software selezionando alcune opzioni che lo aiutino a capire come è stato catturato il set di dati, permettendo una sorta di previsione delle coppie. Qui troviamo due aree: la prima è Matching coppia di immagini, che determinare come le coppie di immagini saranno accoppiate, la seconda è Strategia di Matching, che vi consente di determinare come le immagini saranno accoppiate.

Aerofotogrammetria con drone e Pix4Dmapper: elaborazione iniziale corrispondenza

Tra le opzioni troviamo Griglia aerea o corridoio, se le vostre immagini sono state ottenute da un volo automatico impostato su griglia o su percorso; Volo libero o terrestre, ideale per percorsi non predefiniti (tra questi rientra anche il volo circolare attorno ad un edificio) oppure per le riprese di fotogrammetria terrestre; Personalizzato, qualora nessuna delle due precedenti opzioni restituisca un risultato soddisfacente, dove l'utente ha la possibilità di scegliere tra differenti parametri. Il nome dei singoli parametri è autoesplicante, aggiungiamo pertanto una nota soltanto sull'opzione Usa MTP, che indica che il matching tra immagini verrà effettuato basandosi su Tie Points inseriti manualmente, ed eventualmente quante immagini possono essere accoppiate tramite un dato MTP.

L'ultima opzione riguarda la corrispondenza geometricamente verificata: rallenta molto il matching ma risulta estremamente robusto. In pratica potete dire al software di tenere conto della posizione della camera e non soltanto del contenuto: opzione da settare sempre quando si svolgono missioni che prevedano un'eccessiva quantità di features similari tra immagini che potrebbero ingannare il software. È il caso tipico del campi agricoli, ma anche facciate di palazzi ripetitive con la loro sequenza di finestre sempre uguali: in tal modo si eviteranno accoppiamenti geometricamente irrealistici perché la posizione GPS dell'immagine forzerà il programma a tenerla al suo posto effettivo.

Infine l'ultimo pannello che riguarda la calibrazione: il primo parametro è il Numero di keypoint marcati, per il quale potete scegliere se lasciar decidere al software o dargli un numero massimo di punti chiave da estrarre; il secondo è la Calibrazione, con il quale indicare come i parametri esterni e interni della camera saranno ottimizzati; con Rematch potete dire al programma di effettuare un secondo passaggio per aggiungere ulteriori match oltre quelli già trovati (l'opzione automatico lo consentirà solo per progetti con meno di 500 immagini); Pre-processing per eliminare il cielo vale soltanto con i droni Parrot Bebop; da ultimo con Esportazione potete indicare al software di salvare una copia delle immagini "corrette" utilizzando i parametri di correzione della distorsione individuati.

Aerofotogrammetria con drone e Pix4Dmapper: elaborazione iniziale calibrazione

Due righe in più sul Metodo di calibrazione. Consente tre scelte: Standard è quella predefinita; alternativa è ottimizzata per immagini nadirali geolocalizzate: non può contenere oltre il 5% di immagini oblique e deve contenere almeno il 75% di immagini con coordinate GPS (consigliata ad es. per la mappatura di campi agricoli, dove si verificano le condizioni di un basso livello di texture e un terreno piatto); infine geolocalizzazione accurata e orientamento è ottimizzata per progetti che contengano immagini con geolocalizzazione e orientamento molto accurati.

Possiamo affidarci ad un template predefinito, oppure giocare con una serie di parametri trovando il nostro template, che può essere salvato per futuri progetti attraverso l'apposito comando in basso alla finestra. Questo template sarà poi richiamato quando avvierete un nuovo progetto nella prima schermata mostrata in precedenza. Clicchiamo su ok per uscire da questo pannello e finalmente possiamo avviare la nostra elaborazione del primo step. Pix4Ddiscovery consente il salvataggio del progetto, quindi potete salvarlo per la prossima puntata.

Per oggi siamo giunti alla conclusione di questa puntata. La prossima volta procederemo con la creazione del modello, lavorando sui parametri previsti.

Ricorda che lavoriamo al fianco dei professionisti per collaborare con loro nella perfetta riuscita dei loro progetti: se sei alle prime armi, vuoi migliorare la resa dei tuoi elaborati o semplicemente sfruttare la nostra conoscenza nel campo per i tuoi progetti, non esitare a contattarci con il form sottostante.

Legend
  1. Your Name (required)
  2. Email Address (required)
  3. Your Message
  4. Autorizzo al trattamento dei dati contenuti nel presente modulo, inclusi quelli personali D.Lgs. 196/2003 e art. 13 GDPR 679/16, per le finalità descritte, in accordo alla Privacy Policy che dichiaro di aver letto* (richiesto)

* Required

Nessuno dei dati inseriti nel form e inviati verrà conservato sul server o all'interno di questa piattaforma.

[wpgdprc "By using this form you agree with the handling of your data by this website."]

Posted by Archeo Staff in Droni, 0 comments

HOW TO: aerofotogrammetria con drone e Agisoft Photoscan. Il modello 3D

HOW TO: aerofotogrammetria con drone e Agisoft Photoscan. Il modello 3D

Siamo arrivati alla terza puntata del nostro tutorial tecnico sull'aerofotogrammetria da drone. In questi primi appuntamenti stiamo lavorando con il software Agisoft Photoscan. Nei prossimi appuntamenti scopriremo il software Pix4D Mapper.

Nelle due precedenti puntate abbiamo trattato i temi dalla pianificazione di volo fino all'allineamento delle immagini, inserimento marker e correzione metrica del rilievo, affinché si possa parlare di vero rilievo aerofotogrammetrico e non di Computer Vision.

Ricordiamo che questo tutorial è organizzato sul set di fotografie gentilmente concesse da © Paolo Allodoli 2018, relative alla Chiesa di San Biagio a Lendinara e scattate con un DJI Spark (rif. ENAC 18238).

HOW TO: aerofotogrammetria con drone e Agisoft Photoscan. Introduzione (parte 1)

HOW TO: aerofotogrammetria con drone e Agisoft Photoscan. Elaborazione (parte 2)

Aerofotogrammetria step 8: controllo area di lavoro

Terminata la fase di allineamento e aggiunta marker, possiamo finalmente passare alla generazione del modello 3D vero e proprio. Per limitare il calcolo alla sola area di nostro interesse, al fine di ottimizzare tempi e risorse, dobbiamo per prima cosa ridimensionare l'area di lavoro: di default, l'area viene impostata dal software selezionando sulla nuvola di punti sparsa quella che contiene il maggior numero di punti vicini, lasciando fuori soltanto quelli sparsi ai bordi della nuvola. Premiamo il tasto 7 sul pad numerico per impostare la vista top, il tasto 5 sul pad numerico per impostare la vista ortografica, e selezioniamo il comando Ridimensiona area. Oppure da menu Modello --> Trasforma area --> Ridimensiona area: questo comando attiva agli angoli del nostro box dei pallini blu, che è possibile trascinare dove vogliamo limitare il calcolo. Siccome il box è tridimensionale, gli spigoli sono 8 pertanto anche i pallini blu saranno 8: clicchiamo sul pallino blu con il tasto sinistro e teniamo premuto per trascinarlo dove vogliamo. Poiché il box di selezione dovrà sempre mantenere un aspetto parallelepipedo, selezionare un angolo vuol dire selezionare anche quello equivalente allo spigolo soprastante/sottostante, e spostarlo vuol dire spostare anche gli spigoli ortogonali alla direzione di spostamento. Ripetiamo la stessa operazione premendo il tasto 1 sul pad numerico per attivare la vista frontale.

Poiché il GPS del nostro UAV ha salvato negli EXIF delle immagini le proprietà di latitudine e longitudine, il nostro modello è scalato e orientato con buona approssimazione: non è pertanto necessario agire sulla rotazione e sullo spostamento dell'area, che sono comunque gli altri due comandi che si possono usare per "piegare" le dimensioni dell'area di lavoro alle nostre necessità.

Aerofotogrammetria con drone e Agisoft Photoscan: dimensionare l'area di lavoro

Aerofotogrammetria step 9: generazione nuvola densa

Impostata correttamente l'area di lavoro, siamo finalmente pronti per il processo di ricostruzione 3D. Attiviamo il comando da menu Processi --> Genera nuvola densa: si apre una finestra dove selezionare i parametri di calcolo.

La Qualità Generale serve per determinare quanto densa dovrà essere la nuvola di punti finale: i parametri, come per l'image matching, vanno da minima ad altissima. Si tenga presente che questo parametro è limitato dalla qualità con cui è stata prodotta la nuvola di punti sparsa, quindi quanti punti il software ha effettivamente individuato su ogni singola immagine: è impossibile pensare di ottenere una qualità altissima da un image matching di livello basso. Si può però saltare uno step, ad esempio con un image matching medio ottenere una dense cloud alta. Si tenga presente che più si alza questo parametro più aumentano esponenzialmente i tempi di calcolo. Va considerato inoltre che a detta degli stessi tecnici di Agisoft, maggiore è l'overlap tra le immagini (ovvero la porzione di fotografie che inquadra la stessa area) più lungo sarà il processo di filtraggio della profondità che è alla base della generazione della nuvola densa.

Come in precedenza, la scelta tra qualità media e qualità alta va fatta in base alla scena, ovvero quanti piccoli particolari che dunque richiedono un'analisi fine sono da ricostruire. In genere nell'aerofotogrammetria da drone non ci sono molti piccoli particolari, in quanto il rilievo è "affetto" da un GSD relativamente alto, tendenzialmente superiore al cm. Se vogliamo ricostruire la statua sulla guglia di una chiesa, potremo aumentare a qualità altissima il calcolo, ma se abbiamo volato a 50 metri di distanza ci sarà poco da fare: meglio pianificare un volo intorno alla statua a distanza ravvicinata (10 metri) e poi impostare una qualità media: il risultato sarà comunque superiore.

La seconda opzione riguarda i parametri avanzati del filtro di profondità: ne troviamo quattro, da disabilitato ad aggressivo. Non dobbiamo mai disabilitare il filtro, mentre le altre 3 opzioni agiranno sullo smussamento degli spigoli, quindi uno smussamento aggressivo tenderà ad appiattire molto le curve, uno leggero sarà più gentile. Tale impostazione va scelta in base a quanti particolari vanno ricostruiti e alla loro dimensione: per una semplice architettura, un filtro aggressivo aiuterà a ricostruire facciate non bozzate, mentre nel caso della modellazione organica (ad es. statue o decorazioni architettoniche) sarà più indicato un filtro leggero per conservare i particolari.

Infine selezioniamo anche calcola colore dei punti se non vogliamo vedere una dense cloud in B/N.

Aerofotogrammetria con drone e Agisoft Photoscan: dimensionare generazione nuvola densa

Naturalmente nella scelta dei parametri di calcolo la linea guida è sempre l'output: avremmo bisogno di massima precisione e accuratezza nel caso di modello per reverse engineering o modelli 3D da cui ottenere riproduzioni per stampa tridimensionale, oppure modelli di tipo organico dove la riproduzione delle curve deve essere puntuale (e questa operazione necessita di tanti punti da trasformare in tanti poligoni). In questo caso si dovrà scegliere un workflow di qualità alta o in qualche caso anche altissima.

Ma se ad esempio ci interessa un output verso visualizzatori online tipo Sketchfab, la riproduzione per mondi virtuali, o la generazione di ortofoto per capitolati d'appalto, impegnare la nostra workstation per ore e giorni a calcolare decine di milioni di punti è solo un dispendio di risorse e tempo, perché ciò che richiede l'output è soltanto un modello metricamente preciso e accurato. Nella maggior parte di queste situazioni un workflow di qualità media risulta sufficiente, solo in qualche caso si dovrà scegliere una qualità alta. Le caratteristiche dell'oggetto verranno comunque mantenute anche con una forte discretizzazione finale.

Aerofotogrammetria con drone e Agisoft Photoscan: la nuvola densa

Come potete vedere dall'immagine soprastante, di per sé la nuvola di punti è già un prodotto "finale": è la ricostruzione 3D strutturata di un oggetto o una scena, e può essere esportata e lavorata con specifici software di trattamento, demandando a loro l'analisi o la poligonalizzazione stessa. Per citarne alcuni, si va da software free come Cloud Compare o l'italiano MeshLab, fino a software commerciali come Geomagic. Vedremo in un futuro appuntamento come classificare la nuvola di punti, un'operazione che Photoscan può gestire e che consente eccezionali possibilità di analisi professionali.

Ma la nuvola densa è anche la base per elaborare la mesh 3D: vediamo come.

Clicca e acquista DJI Spark, il miglior drone "trecentino" in Italia, nell'unico store DJI ufficiale in Italia. Aiuterai questo blog

Aerofotogrammetria step 10: generazione mesh 3D

Una mesh poligonale è una "maglia" composta da vertici, spigoli e facce che materializzano delle celle poligonali. Le tipologie di mesh più usate in computer grafica sono le mesh triangolari e le mesh quadrilaterali, ovvero mesh in cui le celle sono rispettivamente di 3 lati o di 4 lati. Nello specifico tecnico ognuno di questi elementi, sia esso triangolo o quadrilatero, non è una semplice forma geometrica, ma quello che in gergo si chiama tupla, ovvero un elemento che contiene un database relazionale che associa ad ogni elemento una serie di attributi: ogni quadrato per farla breve si compone di 4 vertici, 4 spigoli e 1 faccia, e il database della tupla contiene le informazioni che spiegano come questi elementi sono connessi tra loro per formare il quadrilatero. Ogni faccia è poi individuata da un vettore che ne imposta la normale, ovvero il lato della faccia che determina cosa è dentro e cosa è fuori la mesh. Per nostra fortuna, non dobbiamo mettere in pratica questa teoria, perché un software come Photoscan nel generare la mesh si occupa già di tutte le questioni topologiche e algoritmiche per determinare la struttura dati della mesh.

Dunque, da menu Processi --> Genera maglia 3D: si aprirà la finestra con le opzioni che andiamo a vedere.

  • Tipo di superficie: nel primo appuntamento abbiamo visto che la selezione è tra Arbitraria (per ricostruire modelli 3D, o solo altezze (heighfield, per modelli 2.5D, ovvero i terreni). Sceglieremo la prima.
  • Dati in ingresso: sceglieremo naturalmente la nuvola densa, ovvero la nuvola che contiene più informazioni
  • Conteggio facce: possiamo dire a Photoscan di discretizzare il modello risultante secondo parametri predefiniti, oppure decidere noi quanti poligoni dovrà avere il nostro modello. Naturalmente il numero di poligoni ricostruibili dipende dalla quantità di punti che il software ha processato durante la costruzione della nuvola densa. La discretizzazione può anche essere compiuta a posteriori, o con un comando apposito di Photoscan, o nei software terzi già citati
  • Interpolazione (in avanzate): determina il modo nel quale il software deve trattare i "buchi": Disabilitata, i buchi rimarranno tali (saranno ricostruite le facce solo dove esistono punti nella dense cloud); con Abilitata le aree vuote verranno interpolate facendo si che ad ogni punto della cloud corrisponda un cerchio di un certo raggio, se tale cerchio interseca altri punti viene ricostruito il poligono altrimenti rimane il "buco"; con Estrapolata il software chiude tutti i buchi presenti nella cloud potremmo dire in maniera indiscriminata: questo parametro va usato con attenzione e a patto di rimuovere successivamente la geometria extra che verrà generata
  • Calcola i colori dei vertici: come sopra

Scelte le nostre opzioni, premiamo su ok e lanciamo il calcolo, attendendone la fine. I tempi saranno più o meno lunghi a seconda delle performance della vostra workstation.

 

Aerofotogrammetria con drone e Agisoft Photoscan: genera mesh 3D

Pulire la mesh 3D da poligoni indesiderati

La funzione genera maglia 3D tende a generare un modello poligonale sovrastrutturato, soprattutto con l'opzione interpolazione abilitata: vi ritroverete insomma con gruppi di poligoni sparsi, disconnessi dal modello, o comunque una serie di facce non volute. Tali elementi possono essere facilmente rimossi con gli strumenti di selezione della toolbar, ma non sempre è possibile selezionare correttamente le facce non volute, discriminandole da quelle volute. Per cancellare ciò che non serve, al fine di costruire una texture corretta, ci viene in aiuto un tool che dalla versione 1.4 di Photoscan troviamo in menu Modello --> Selezione graduale: questo tool si occupa di analizzare il modello, individuare secondo una determinata soglia i componenti sconnessi e selezionarli per voi. Sarà molto semplice a quel punto cancellarli da menu Modifica --> Cancella selezione.

Aerofotogrammetria con drone e Agisoft Photoscan: selezione graduale

Aerofotogrammetria step 11: costruire la texture

La maglia 3D colorata non sempre è un prodotto finale bello da vedere: evidenzia particolari indesiderati, e non mostra quelli desiderati. Per ovviare a questo problema, alla mesh poligonale è possibile associare una texture che aumenta esponenzialmente la quantità di particolari visibili su ogni faccia.

Questa operazione si porta a termine con il comando menu Processi --> Genera texture: le sue impostazioni di default sono sufficienti nella stragrande maggioranza dei casi. Una modalità di mappatura generica ben si adatta a modelli 3D, la modalità di fusione a mosaico va preferita per la generazione di ortofoto e la dimensione e il numero di texture dipendono dalla quantità di poligoni del modello (4096 o 8192 x1 sono le scelte più comuni). Se abbiamo detto al software di interpolare i buchi, selezioneremo in avanzate il riempimento buchi anche per la texture, mentre possiamo soprassedere sul filtro rimozione artefatti luminosi, in quanto questo filtro è comodo solo per set di immagini che presentano una varietà estrema di luminosità tra loro.

Va specificato che a volte la modalità di fusione a mosaico potrebbe fallire, ma va comunque sempre processata per prima in quanto rispetto alla modalità media non va a generare un mix di dettagli tra foto adiacenti, ma per ogni overlap sceglierà la fotografia più appropriata, ovvero quella che presenta il pixel collocato alla distanza minima del centro dell'immagine (cosa che si traduce in una potenziale migliore nitidezza).

Lanciamo il comando premendo ok e attendiamo la fine del calcolo.

Aerofotogrammetria con drone e Agisoft Photoscan: generazione texture

Aerofotogrammetria step 12: esportare il modello 3D

Completata la generazione della texture, abbiamo terminato il nostro lavoro. Non ci resta che esportarlo, per renderlo disponibile in visualizzatori esterni e consegnarlo al cliente o caricarlo online.

Questa operazione è molto semplice e si attiva da menu File --> Esporta --> Esporta modello: il software vi consente di scegliere tra numerosi formati disponibili, compreso il PDF3D, o un'esportazione diretta verso tool online come Sketchfab. Il formato più comune per l'esportazione di mesh 3D con texture è sicuramente il formato OBJ, e anche qui i parametri di default si prestano ad essere sufficienti nella maggior parte delle situazioni.

Aerofotogrammetria con drone e Agisoft Photoscan: esporta modello

Riepilogo

Siamo giunti al termine del nostro tutorial su aerofotogrammetria e Agisoft Photoscan: in questo primo HOW TO abbiamo visto come passare dalla pianificazione del volo all'esportazione di un modello 3D metricamente corretto e texturizzato. Vedremo in futuro, in tutorial più tecnici, come trattare la nuvola di punti e il modello 3D per fini più professionali, dal DTM alla classificazione della point cloud fino alla generazione di ortofoto per ambienti CAD.

Ricorda che lavoriamo al fianco dei professionisti per collaborare con loro nella perfetta riuscita dei loro progetti: se sei alle prime armi, vuoi migliorare la resa dei tuoi elaborati o semplicemente sfruttare la nostra conoscenza nel campo per i tuoi progetti, non esitare a contattarci con il form sottostante.

Nel prossimo HOW TO passeremo a lavorare con Pix4D Mapper, in seguito Zephyr Aerial, e alla fine del percorso vedremo come lavorare con le nuvole di punti per applicazioni professionali.

Contattaci

Legend
  1. Your Name (required)
  2. Email Address (required)
  3. Your Message
  4. Autorizzo al trattamento dei dati contenuti nel presente modulo, inclusi quelli personali D.Lgs. 196/2003 e art. 13 GDPR 679/16, per le finalità descritte, in accordo alla Privacy Policy che dichiaro di aver letto* (richiesto)

* Required

Nessuno dei dati inseriti nel form e inviati verrà conservato sul server o all'interno di questa piattaforma.

[wpgdprc "By using this form you agree with the handling of your data by this website."]

Posted by Archeo Staff in Droni, 0 comments

HOW TO: aerofotogrammetria con drone e Agisoft Photoscan. Elaborazione

Nora Terme a Mare: aerofotogrammetria da drone

Eccoci giunti al secondo appuntamento con il nostro tutorial tecnico sull'aerofotogrammetria da drone. In questi primi appuntamenti stiamo trattando il software Agisoft Photoscan.

Nella precedente puntata abbiamo visto come pianificare la missione, acquisire le informazioni metriche, scattare le immagini, elaborarle in post-produzione e abbiamo infine visto come importarle nel software. Proseguiamo ora il nostro percorso dando avvio alla pipeline di elaborazione vera e propria.

HOW TO: aerofotogrammetria con drone e Agisoft Photoscan. Introduzione (parte 1)

HOW TO: aerofotogrammetria con drone e Agisoft Photoscan. Il modello 3D (parte 3)

Aerofotogrammetria step 6: allineamento di immagini

Il primo step di elaborazione è l'allineamento di immagini, ovvero quell'image matching che abbiamo descritto nel precedente appuntamento. Il programma individua una serie di feature per ogni immagine, risolvendo le equazioni di collinearità: questa operazione consente di orientare le camere nello spazio individuando i punti omologhi tra le immagini. Tali punti verranno inoltre sfruttati per accoppiare le immagini tra loro. Il risultato sarà una nuvola di punti sparsa nella quale ogni punto corrisponde alle coordinate 3D dei punti di legame individuati.

Per prima cosa importiamo le fotografie (stiamo utilizzando la versione demo che non consente il salvataggio del progetto) nel nostro progetto: questo creerà automaticamente un chunk o parte di progetto. Poiché le nostre fotografie sono state scattate da un drone, ad ogni immagine vengono associati dei dati EXIF che contengono informazioni di latitudine e longitudine. Queste informazioni vengono riconosciute dal software che infatti nello spazio modello visualizzerà una serie di punti: ad ogni punto è naturalmente associata un'immagine.

Affinché queste informazioni, oltre che presenti, siano anche visibili, dovrete verificare che sia attiva l'icona camera (indicata dalla freccia rossa), che nella versione italiana corrisponde al comando Mostra Immagini:

Aerofotogrammetria da drone e Agisoft Photoscan: importazione immagini

Quelli che vedete nello spazio modello sono soltanto le posizioni stimate delle camere: Photoscan ancora non sa come sono orientate queste camere, compito che appartiene al comando Menù --> Processi --> Allinea foto.

Attivando questo comando, si aprirà un pannello con le impostazioni di elaborazione: questa fase è la base di ogni progetto, bisognerà indicare i corretti parametri senza appesantire troppo il calcolo. Vediamo le voci nel dettaglio:

  • Precisione: determina il numero di feature che verranno individuate in ogni immagine. Tanto maggiore sarà questo numero, tanto più densa sarà la nuvola di punti da cui estrarre il modello 3D. Generalmente un primo match di controllo si fa molto velocemente con l'impostazione Bassa (Low): verranno individuati qualche migliaio di punti. Con l'impostazione Media (Medium) vengono individuati tra i 15.000 e i 20.000 punti. Con l'impostazione Alta (High) possono essere individuati anche 70.000 punti e oltre (fino a 120.000 per un sensore full frame come quello di una Canon 5D Mark II). Con l'impostazione Massima (Maximum) non c'è limite alle feature individuate dal programma, che virtualmente assegna un punto ad ogni pixel, e viene limitato soltanto nelle impostazioni avanzate alla voce Limite punti chiave: 150.000 per questo valore e 25.000 per il Limite punti di vincolo sono sufficienti. Si consideri che maggiori sono i punti da allineare, più tempo ci vorrà, anche se l'effetto è quello di aumentare la qualità del modello. Ma attenzione, non sempre un numero straordinario di punti restituisce un modello effettivamente migliore: a fronte di decine di ore di calcolo in più, si potrebbero guadagnare appena pochi punti percentuali di precisione.
  • Preselezione foto georeferenziate: questa impostazione dice al software di ricordarsi che naturalmente è più probabile trovare il matching tra due camere vicine (in base a latitudine e longitudine) che non tra due camere lontane. Quindi i punti omologhi verranno cercati solo tra immagini vicine, velocizzando moltissimo l'operazione di image matching. Questa opzione non va attivata nel caso di operazioni di fotogrammetria terrestre con camere senza GPS.

Per far comprendere meglio questo processo, aggiungiamo che le immagini nelle quali ricercare i punti di vincolo vengono trattate in questo modo:

  • Highest: l'immagine è scalata con fattore di 4x in aumento (quindi è 4 volte più grande)
  • High: l'immagine è trattata alla sua scala originale
  • Medium: l'immagine è scalata con fattore di 4x in diminuzione (quindi è 4 volte più piccola)
  • Low: l'immagine è scalata con fattore di 16x in diminuzione (quindi è 16 volte più piccola)

Come vedete, a seconda del numero di pixel da analizzare aumentano le feature individuabili ma contestualmente i tempi di elaborazione. E naturalmente viceversa.

Al termine del processo, che con parametri medi dovrebbe durare pochi minuti su una workstation low-budget (nel tutorial corrente stiamo analizzando 190 immagini scattate da un DJI Spark), apparirà nel modello una nuvola di punti sparsi e adesso a ogni punto sarà associata un'immagine correttamente orientata.

Oneri computazionali

Aggiungiamo anche in questo caso due righe sul calcolo necessario a portare a termine questa operazione: come indica la stessa Agisoft, portare a termine il processo di image matching richiede un ammontare di memoria RAM dipendente dal numero di foto appartenenti al chunk. Si parla unicamente di numero di immagini, la loro dimensione come scritto prima incide soltanto sul tempo di calcolo.

Fotografie 100 200 500 1000 2000 5000 10000
RAM 500MB 1GB 2.5GB 5GB 10GB 25GB 50GB

Si può subito notare come ad un numero doppio di immagini da analizzare, corrisponda una quantità doppia di RAM da possedere nel sistema.

Ottimizzazione dell'allineamento

Prima di proseguire, lanciamo il comando Ottimizza immagini: facciamo clic con il tasto destro sul Chunk 1 --> Elabora --> Ottimizza immagini. Il perché è presto detto: Photoscan nella fase di allineamento ha ricostruito i 7 parametri affini di trasformazione lineare (3 parametri per la traslazione, 3 per la rotazione e 1 per il ridimensionamento). Non può tuttavia rimuovere la componente non lineare che spesso causa piccoli errori nel modello: queste deformazioni non lineari si possono correggere, se presenti, con questa ottimizzazione, che dura davvero pochi secondi.

Aerofotogrammetria da drone e Agisoft Photoscan: ottimizza immagini

Aerofotogrammetria da drone e Agisoft Photoscan: fase di ottimizzazione delle immagini

Clicca e acquista DJI Spark, il miglior drone "trecentino" in Italia, nell'unico store DJI ufficiale in Italia. Aiuterai questo blog

Aerofotogrammetria step 7: correzione metrica del progetto

Prima di arrivare alla generazione definitiva del modello, è conveniente introdurre una fase intermedia di avanzamento per poi tornare indietro e proseguire più speditamente.

Andiamo in Processi --> Generazione maglia 3D. Poiché il processo sarà basato su una nuvola di punti di tipo sparso ottenuta con parametri medi, la poligonalizzazione della medesima produrrà un modello in pochi secondi ma molto piatto. Questa fase a noi serve per individuare sul modello i marker: per fare questo, il colore dei poligoni non è sufficiente, pertanto attiviamo subito dopo il comando Processi --> Genera texture. Questi comandi li spiegheremo con più puntualità nei prossimi step.

Ecco che "magicamente" vediamo apparire nello spazio modello il nostro edificio, a bassa risoluzione, ma con particolari ben evidenti, ad esempio strade, finestre e altro ancora, che potremo aver misurato e preso come riferimento. Ora ruotando il modello portiamoci nei nostri punti-marker, ad esempio gli spigoli di una finestra: facciamo clic con il tasto destro e poi sul comando Aggiungi marcatore. Nello spazio modello ora appare un punto con una bandierina blu e relativa etichetta con nome.

Attiviamo il pannello inferiore Foto e noteremo che anche accanto alle immagini sono apparse delle bandierine blu e/o bianche: le bandierine blu indicano i marker visibili in foto, quelle bianche i marker presenti in foto ma nascosti.

Aerofotogrammetria da drone e Agisoft Photoscan: aggiunta marker

Ora se facciamo doppio clic su una delle immagini contenenti i marcatori con bandierina blu, la attiveremo nel riquadro principale: zoomiamo sul marcatore e selezionandolo con il mouse spostiamolo nella posizione corretta. Ripetendo questa operazione per tutte le immagini contenenti le bandierine blu (operazione lunga ma necessaria per ottenere una metrica precisa e accurata), noteremo come le bandierine e i marcatori sono diventati verdi (vd fotomontaggio sottostante). Questa è la necessaria operazione manuale che differenzia davvero un progetto di aerofotogrammetria da un progetto di Computer Vision.

Aerofotogrammetria da drone e Agisoft Photoscan: posizionamento marker

Riallineamento delle immagini

In sostanza sono stati introdotti dei punti di vincolo a cui il software si dovrà attenere: questa operazione diventa utile anche quando per un qualsiasi motivo vi fossero delle immagini non allineate all'interno del chunk. Individuando almeno 4 punti sull'immagine non allineata e individuando i medesimi 4 marker in almeno 2 immagini del dataset allineato, sarà possibile procedere a un allineamento parziale delle immagini senza matching per le quali il software utilizzerà i 4 marker individuati come punti di vincolo certi.

Allineamento di chunk o parti

I marcatori sono importanti anche per l'allineamento di chuck: abbiamo detto più volte che un progetto può essere diviso in parti. Le ragioni principali per fare ciò risiedono nella potenza del computer, che potrebbe non essere in grado di sopportare un elevato numero di immagini, oppure nell'integrazione dati, laddove ad esempio uno stesso edificio viene ripreso sia dall'alto che da terra, magari con un sensore diverso, per coprire le zone d'ombra. Anche se gli algoritmi basati su immagini lavorano per riconoscimento di punti omologhi, è bene che fonti diverse vengano trattate in maniera diversa: questo perché ogni coppia sensore+obiettivo ha una distorsione propria e una dimensione d'immagine propria, processare insieme le immagini provenienti da fonti diverse, ancorché possibile, degrada la qualità metrica del progetto. Trattando le fonti come parti diverse, ovvero chunk diversi di un stesso progetto, è possibile allinearli attraverso i marker per fondere le nuvole di punti finali, ognuna con elevata precisione metrica.

Vedremo questo passaggio alla fine del tutorial.

Bene, anche oggi siamo giunti alla conclusione di questa puntata. Abbiamo visto come caricare le immagini, allinearle, ottimizzarle e inserire i marcatori che ci saranno utili per la correzione metrica del nostro progetto.

Nel prossimo appuntamento vedremo come scalare il modello, generare la nuvola di punti densa e partendo da questa generare i prodotti derivati, a cominciare dalla mesh 3D texturizzata.

Ricorda che lavoriamo al fianco dei professionisti per collaborare con loro nella perfetta riuscita dei loro progetti: se sei alle prime armi, vuoi migliorare la resa dei tuoi elaborati o semplicemente sfruttare la nostra conoscenza nel campo per i tuoi progetti, non esitare a contattarci con il form sottostante.

Contattaci

Legend
  1. Your Name (required)
  2. Email Address (required)
  3. Your Message
  4. Autorizzo al trattamento dei dati contenuti nel presente modulo, inclusi quelli personali D.Lgs. 196/2003 e art. 13 GDPR 679/16, per le finalità descritte, in accordo alla Privacy Policy che dichiaro di aver letto* (richiesto)

* Required

Nessuno dei dati inseriti nel form e inviati verrà conservato sul server o all'interno di questa piattaforma.

[wpgdprc "By using this form you agree with the handling of your data by this website."]

Posted by Archeo Staff in Droni, 1 comment