drone

Guida al nuovo DJI GEO System 2.0

Da un paio di mesi è attivo il nuovo sistema di geofencing sviluppato da DJI per i suoi droni, al fine di prevenire voli non autorizzati sopra obiettivi sensibili. Il Geospatial Environment Online System modifica sensibilmente quanto siamo stati abituati a vedere sulla Geo Map, adottando gli standard dell'ICAO ANNEX 14 per la classificazione degli aeroporti e un nuovo sistema poligonale per l'individuazione delle aree no fly: questo migliora sensibilmente le restrizioni limitandole alle sole aree sopra le quali ve ne è effettivo bisogno e rispetto al generico cerchio offre maggiori possibilità di volo ma in qualche caso una restrizione laddove prima si poteva volare. Tutto questo al fine di migliorare la sicurezza di tutti, cose e persone.

Il GEO 2.0 System interessa i droni appartenenti alla famiglia dei Phantom 4, M200 e Mavic, oltre al DJI Spark e all'Inspire 2, mentre la famiglia Phantom 3, Inspire 1 e M600 continuerà ad adottare il GEO System originale.

Attualmente il GEO 2.0 System è stato implementato per i soli Stati Uniti, ma arriverà presto anche negli altri Paesi, Italia compresa. Pertanto questa guida serve per prendere coscienza del nuovo sistema ed essere pronti quando sarà implementato in via definitiva anche da noi.

7 GEO Zones

Nel video precedente DJI offre utili indicazioni, che dovremmo sempre tenere a mente, per un volo sicuro, e spiega come lavora il nuovo GEO 2.0 System.

Chi dei lettori vola già da qualche anno, ricorderà sicuramente le divisioni del GEO System originale: verde, giallo e rosso a identificare le aree a diversa restrizione. Ora le aree sono diventate 7, di cui 5 principali e 2 secondarie:

Restricted Zone. In questa zona, che appare in rosso nell'app DJI GO, il volo è bloccato. Soltanto se l'operatore è autorizzato a volare dalle autorità competenti (trattandosi per lo più di aeroporti, soggetti in Italia alle famose ATZ), potrà fare richiesta di sblocco scrivendo a [email protected] o collegandosi all'Online Unlocking.

Altitude Zones. Le zone a limitazione di altezza appariranno in grigio sulla mappa del GEO 2.0 System. Attraverso un warning sull'app DJI GO o DJI GO4 l'utente sarà avvisato che l'altezza di volo è limitata.

Authorization Zones. In queste zone, che appaiono in blu sulla mappa, l'utente riceverà un warning che lo avviserà del fatto che il volo è limitato. Per sbloccare il decollo del drone DJI autorizzerà l'utente se in possesso di un account su server DJI verificato.

Warning Zones. In queste zone, che potrebbero NON apparire sulla mappa all'interno dell'app DJI GO, l'utente riceverà un avviso che sta operando in tale area. Un esempio di Warning Zone sono le aree di protezione per gli animali, come i parchi nazionali (in Italia il volo nei parchi nazionali sotto i 500 metri AGL è vietato da una specifica legge).

Enhanced Warning Zones. In queste zone, il sistema GEO avviserà l'utente che sarà necessario ottenere l'autorizzazione al volo come nel caso delle Authorization Zone, ma per decollare non sarà necessario possedere un account verificato o essere collegati a internet al momento del volo.

Densely Populated Area. Quest'area è mostrata in rosso sulla mappa. A causa dell'elevata concentrazione di persone che rende il volo non sicuro, DJI consiglia di non sorvolare quest'area. Un esempio sono i centri commerciali.

Regulatory Restricted Zones. Si tratta di aree speciali dove il volo è vietato da restrizioni legislative o altri provvedimenti simili. Un esempio sono le aree che circondano le prigioni.

Recommended flight. Quest'area apparirà in verde sulla mappa. Si tratta di zone dove DJI consiglia di scegliere di andare a volare, preselezionate per un volo sicuro lontano da centri urbani e concentrazioni di persone.

DJI GEO 2.0 System tutorial

Ecco come appare oggi la mappa su Washington per chi usa un drone della serie Mavic, Phantom 4, M200 oppure uno Spark o un Inspire 2, con l'implementazione delle nuove zone e il nuovo sistema a poligoni per determinare con più esattezza le aree di divieto. Presto vedremo questa stessa mappa anche su Roma e le altre città italiane.

DJI GEO System

Questo invece è il confronto con il vecchio GEO System, attivo per chi ancora vola negli USA con la serie Phantom 3, M600 o con un Inspire 1, con le aree individuate da cerchi di raggio predefinito, e per tutti noi che voliamo in Italia.

Bisogna ricordare che il DJI GEO 2.0 System è un sistema indipendente dalle leggi nazionali e dai regolamenti locali (come il Regolamento SAPR emanato da ENAC o la cartografia AIP di ENAV), ed è basato unicamente su un concetto di sicurezza e di prevenzione nell'uso sconsiderato dei droni DJI. La stessa azienda avvisa che potranno essere attivate aree di restrizione temporanee, sopra stadi che ospitano eventi di particolare rilevanza, incendi e altre situazioni di emergenza, ma che queste come altre aree potrebbero apparire soltanto sulla mappa presente all'interno dell'app DJI GO e non sulla web map.

Nella maggior parte delle zone soggette a restrizione, all'utente sarà chiesto di dimostrare che è in possesso delle autorizzazioni necessarie ad operare: inoltre avrà bisogno di un account verificato sul server DJI e di una connessione internet attiva sul dispositivo che controlla il drone al momento del decollo. In alcune zone lo sblocco del drone potrà essere messo in atto dallo stesso utente, attraverso un'azione di auto-autorizzazione sulla relativa pagina DJI.

È bene ancora ricordare che bisogna controllare la mappa mostrata all'interno dell'app DJI GO e DJI GO4 per essere certi che l'area dove si vuole volare non ricada all'interno di una zona di restrizione. Come scritto in precedenza non tutte queste aree vengono mostrate sulla web map presente sul sito DJI.

DJI GEO System: solo per DJI GO, non per app di terze parti

Poiché il sistema GEO di DJI (in entrambe le versioni, 1.0 e 2.0) richiede una connessione ad internet e un account sul server dell'azienda, le aree con restrizioni di volo possono essere bypassate soltanto se l'applicazione attiva sul device di controllo è la DJI GO o la DJI GO4 o la DJI GS Pro se avete un iPad: nulla da fare dunque per Litchi, Autopilot, Pix4D Capture e tutte le altre applicazioni di terze parti per il volo automatico per fare riprese o rilievi aerofotogrammetrici. Il volo dovrà essere manuale, oppure sfruttare il sistema astruso dei waypoint che offre DJI GO.

Per questo è buona pratica controllare sempre prima di recarsi a volare se l'area è affetta da restrizioni di volo imposte dal sistema DJI: perché una volta sul campo, non avrete modo di far decollare il vostro drone senza aver compiuto i dovuti passaggi per l'unlock.

Una guida su come sbloccare il drone e volare nelle zone con restrizione sarà presto disponibile.

Posted by Archeo Staff in Droni, 0 comments

Presentato il DJI Phantom 4 RTK per rilievi aerei

DJI Phantom 4 RTK

DJI ha aggiornato il suo prodotto di punta della classe Phantom aggiungendo il modulo RTK e creando il Phantom 4 RTK: nei desiderata della casa cinese un drone per rilievi aerofotogrammetrici con precisione centimetrica. Le parole di Sunny Liao, DJI Enterprise Director per l'Europa, vanno proprio in questa direzione:

“Phantom 4 RTK è stato studiato per venire incontro alle esigenze specifiche di quegli utenti che sentono la necessità di affidarsi ai potenti strumenti di cui sono dotati i droni DJI per eseguire rilievi, mappature e ispezioni

L'acronimo RTK sta per Real-Time Kinematic, ovvero rilievo cinematico in tempo-reale: si tratta della tecnologia che consente ai ricevitori GNSS "terrestri" di ottenere una precisione centimetrica nel punto da acquisire, differenziandosi in tal modo dai ricevitori GNSS presenti ad esempio nei nostri smartphone che si basano esclusivamente su una posizione stimata, che viene aumentata attraverso la connessione GSM. Il discorso non cambia con l'RTK professionale, perché la precisione centimetrica viene garantita da una correzione della posizione ottenuta attraverso la connessione con una rete di ricevitori satellitari fissi posti a terra: in tal modo si chiude il triangolo ed è possibile stimare con precisione la posizione del punto in base al sistema della triangolazione. La connessione alla rete terrestre viene ottenuta attraverso il protocollo NTRIP che trasferisce i dati RCTM: le reti di ricevitori terrestri sono svariate, si va da quelle nazionali tipo ITALPOS (che però essendo privata è a pagamento) a quelle regionali, alcune a pagamento (come quella della Sardegna), altre gratuite (come quelle di Lazio, Abruzzo, etc.). I dati vengono trasmessi attraverso una connessione internet, tipicamente una connessione GSM che deve essere di buona qualità (almeno H+ o 4G) per consentire una correzione veramente in tempo reale. In mancanza di questa connessione, non esiste alcuna correzione RTK quindi non c'è alcuna precisione centimetrica. La connessione GSM può essere interna alla strumento, oppure esterna, collegando tramite WiFi il controller del ricevitore all'hotspot del nostro smartphone.

Il Phantom 4 RTK garantisce questa connessione attraverso una chiavetta dongle 4G o un hotspot WiFi (supportato da OcuSync in aree con 5.8GHz: SRRC/NCC/FCC < 26 dBm). Abbiamo detto però che la connessione può essere assente o non sufficientemente veloce: in quel caso bisogna passare al sistema base+rover, che chiude la triangolazione per la correzione attraverso una base che rimane fissa e sostituisce le basi fisse delle reti terrestri. La base deve rimanere fissa svariati minuti prima di iniziare a lavorare. Anche in questo caso il Phantom 4 RTK risolve il problema con la stazione di terra D-RTK2 Mobile Station, un ricevitore differenziale posto a terra che si occupa di chiudere il triangolo, comunicando con il drone attraverso OcuSync.

La panacea di tutti i problemi?

I professionisti del rilievo aerofotogrammetrico sanno bene quanto sia difficile a volte acquisire di punti GCP in ambienti ostili: i Ground Control Point sono i punti acquisiti con sistemi di alta precisione che servono al software per la correzione metrica del modello, senza la quale non si può parlare di fotogrammetria. È davvero possibile pensare di poter eliminare la necessità di acquisire i GCP utilizzando il Phantom 4 RTK? La risposta tecnicamente corretta è NO.

Il motivo è presto spiegato: anche se la correzione metrica fosse corretta in base alla posizione accurata delle immagini, non è corretta l'altimetria del modello: le coordinate vengono infatti acquisite calcolando l'altimetria sulla base dell'ellissoide, mentre la quota reale deve essere corretta sulla base del geoide. Questo è il motivo per cui se il vostro Phantom decolla da una spiaggia e si porta a 50 metri di altezza, le sue coordinate gli faranno credere di essere a 100 metri di quota. La differenza altimetrica tra ellissoide e geoide si stima infatti mediamente intorno ai +50 metri. Un ricevitore GNSS professionale ha la possibilità di essere impostato affinché le sue coordinate altimetriche vengano corrette sulla base del geoide (in Italia i più diffusi sono l'ITA99 e l'ITA2008), ma un lavoro veramente accurato si ottiene soltanto convertendo le coordinate con l'uso dei grigliati prodotti dall'IGM.

Inoltre non bisogna dimenticare che a livello ufficiale, il WGS84 generalmente utilizzato dai droni in quanto sistema di riferimento internazionale, non è un sistema riconosciuto dallo Stato Italia, per cui nella produzione di cartografia destinata alla progettazione pubblica, ricorda la Direzione Geodetica dell'IGM, va utilizzato il Sistema Geodetico di Riferimento ETRF2000 epoca 2008.0 divenuto obbligatorio a livello nazionale a seguito del DM 10 novembre 2011 "Regole tecniche per la definizione delle specifiche di contenuto dei database geotopografici".

Quindi l'idea che si possano eliminare i GCP è, almeno oggi, tecnicamente sbagliata. Inoltre bisogna aggiungere che non di soli GCP vive la fotogrammetria: un lavoro veramente valido si appoggia anche ai punti di controllo, per una verifica indipendente dell'accuratezza del progetto, e anch'essi vanno acquisiti necessariamente a terra con strumentazione topografica di precisione.

La soluzione per i punti inaccessibili

Si potrebbe giustamente rispondere che il Phantom 4 RTK risolve il problema di dover acquisire i GCP in punti inaccessibili: l'obiezione è che se i punti sono inaccessibili difficilmente c'è bisogno di rilevarli con un drone (saranno 2 o 3 i casi su 100), ma in ogni caso è possibile ovviare alla difficoltà con la stazione totale, uno strumento che è in grado di acquisire coordinate relative fino a 1 Km (a seconda dei modelli) in modalità reflectorless, semplicemente puntando un obiettivo che può essere riconosciuto con precisione sulle immagini. Anche la stazione totale è uno strumento che può essere noleggiato a partire da €100 al giorno. Se il chiodo stazione viene rilevato con il ricevitore GNSS, è possibile convertire il sistema di coordinate relativo della stazione totale nel sistema di coordinate assoluto del GNSS.

DJI D-RTK2 Mobile Station

I prezzi

DJI Phantom 4 RTK viene venduto in 3 configurazioni diverse:

Normalmente un Phantom 4 Pro V2 costa €1.699, un buon sistema di ricevitori GNSS terrestri base+rover costa ca. €15.000 (nuovo, se usato molto meno, anche la metà), un solo rover costa ca. €8.500. Da un punto di vista del costo netto, un risparmio davvero notevole, ma considerando che rilievi di questo tipo vengono eseguiti per lo più da professionisti che nella vita fanno già i geometri, gli architetti, gli ingegneri, è probabile che tali strumenti siano già posseduti, per essere utilizzati in tutte le situazioni dove è necessario acquisire punti con precisione centimetrica, mentre la soluzione drone è a se stante, funziona solo in aria e non a terra. Inoltre, un ricevitore GNSS RTK si può noleggiare senza troppa difficoltà a prezzi che partono da €100 al giorno, quindi in definitiva oltre a non eliminare la necessità di acquisire i punti GCP (che comunque necessitano di uno strumento topografico terrestre), non fanno nemmeno risparmiare.

La disponibilità del Phantom 4 RTK è a partire da ottobre 2018, mentre per il D-RTK2 bisogna aspettare novembre 2018.

DJI GS RTK

Insieme al drone, DJI ha presentato anche GS RTK (o GSR), la nuova app compatibile con il sistema RTK che consente la pianificazione della missione di rilevamento, che può essere salvata e replicata nel tempo, e che consente il caricamento di file KML e KMZ relativi all'area da mappare. Presente anche la funzione Operation Resumption che, qualora la batteria non sia sufficiente per completare la missione, vi consente di cambiarla ripristinando i dati di missione in maniera automatica.

Posted by Archeo Staff in News, 0 comments

HOW TO: aerofotogrammetria con drone e Pix4Dmapper. Il modello 3D

Aerofotogrammetria con drone e Pix4Dmapper

Eccoci giunti al sesto appuntamento con il nostro tutorial tecnico sull'aerofotogrammetria da drone. In questa seconda parte stiamo trattando il software Pix4Dmapper nella sua versione demo Pix4Ddiscovery.

Nelle precedenti puntate abbiamo scoperto come avviare un progetto, importare le immagini e dato un'occhiata ai segreti dell'image matching. Quindi abbiamo avviato l'elaborazione, importato i GCP, proceduto alla correzione metrica della nostra ricostruzione e salvato il lavoro. Ora riapriamo il nostro progetto e concludiamo il percorso.

HOW TO: aerofotogrammetria con drone e Pix4Dmapper. Introduzione (parte 1)

HOW TO: aerofotogrammetria con drone e Pix4Dmapper. Elaborazione (parte 2)

Riepilogo

Siamo giunti al termine del nostro tutorial su aerofotogrammetria e Pix4Dmapper: in questo secondo HOW TO abbiamo visto come passare dall'elaborazione delle immagini alla creazione di un modello 3D metricamente corretto e texturizzato. Vedremo in futuro, in tutorial più tecnici, come trattare la nuvola di punti e il modello 3D per fini più professionali, dal DTM alla classificazione della point cloud fino alla generazione di ortofoto per ambienti CAD.

Nell'ultima parte di questo HOW TO scopriremo le potenzialità del software tutto italiano Zephyr Aerial.

Ricorda che lavoriamo al fianco dei professionisti per collaborare con loro nella perfetta riuscita dei loro progetti: se sei alle prime armi, vuoi migliorare la resa dei tuoi elaborati o semplicemente sfruttare la nostra conoscenza nel campo per i tuoi progetti, non esitare a contattarci con il form sottostante.

Contattaci

Legend
  1. Tuo nome (required)
  2. Tua email (richiesto)
  3. Oggetto
  4. Tuo messaggio
  5. Autorizzo al trattamento dei dati contenuti nel presente modulo, inclusi quelli personali D.Lgs. 196/2003 e art. 13 GDPR 679/16, per le finalità descritte, in accordo alla Privacy Policy che dichiaro di aver letto* (richiesto)

* Required

Nessuno dei dati inseriti nel form e inviati verrà conservato sul server o all'interno di questa piattaforma.

[wpgdprc "By using this form you agree with the handling of your data by this website."]

Posted by Archeo Staff in Archeologia, 0 comments

HOW TO: aerofotogrammetria con drone e Pix4Dmapper. Elaborazione

Aerofotogrammetria con drone e Pix4Dmapper

Eccoci giunti al quinto appuntamento con il nostro tutorial tecnico sull'aerofotogrammetria da drone. In questa seconda parte stiamo trattando il software Pix4Dmapper nella sua versione demo Pix4Ddiscovery.

Nel precedente appuntamento abbiamo scoperto come avviare un progetto, importare le immagini e dato un'occhiata ai segreti dell'image matching. Quindi abbiamo avviato l'elaborazione che questa versione consente di salvare. Ora riapriamo il nostro progetto e proseguiamo il percorso.

HOW TO: aerofotogrammetria con drone e Pix4Dmapper. Introduzione (parte 1)

Aerofotogrammetria step 6: correzione metrica del progetto

Come già espresso nelle precedenti puntate dedicate ad Agisoft Phostoscan, la differenza tra Computer Vision e fotogrammetria consiste nell'accuratezza metrica del progetto: nel primo caso la metrica del modello sarà approssimata, nel secondo caso dovrà essere esatta. Al fine di rendere quanto più conforme possibile la metrica del nostro progetto alla realtà, dobbiamo introdurre una serie di correttivi che la fotogrammetria richiede in quanto tecnica di acquisizione dati di tipo passivo.

Ecco che entrano in ballo i GCP, o Ground Control Point, punti notabili sul terreno o marcatori appositamente posizionati che, acquisiti con apposita strumentazione topografica (tipicamente stazione totale o strumento GNSS), permettono al modello di essere scalato, ruotato e orientato sulla base di coordinate reali (o locali) e misure precise.

Differenza tra GCP e Control Point

Pix4Dmapper introduce accanto ai GCP il concetto di Control Point: punti che il software utilizza per una verifica indipendente dell'accuratezza del progetto. Se i GCP sono disposti con una strategia ben precisa nella nostra area di lavoro (quando possibile), i Control Point devono essere assolutamente randomici. Se i GCP possono essere usati per la correzione metrica del progetto, i Control Point servono a verificarne l'accuratezza.

Tipologia di GCP

In Pix4Dmapper i GCP possono essere di 3 tipi:

  • 2D GPC: se conosciamo soltanto le coordinate X, Y oppure la latitudine e la longitudine (Y, X) del punto
  • 3D GCP: se conosciamo le coordinate X, Y, Z oppure la latitudine, la longitudine e l'altitudine (Y, X, Z) del punto
  • Control Point: se conosciamo le coordinate X, Y, Z oppure la latitudine, la longitudine e l'altitudine (Y, X, Z), ma il punto non viene usato per la ricostruzione del modello.

GCP Editor

Per accedere all'interfaccia di gestione dei GCP, andiamo nel menu Progetto --> Gestione GCP/MTP: si apre un pannello pop-up che presenta 3 sezioni. Vediamole nel dettaglio.

Aerofotogrammetria da drone e Pix4Dmapper: pannello Gestione GCP/MTP
  • Sistema di coordinate GCP: gestisce il sistema di coordinate (ad es. WGS 84) nel quale i GCPs/MTPs/Control Points sono espressi
  • Tabella GCP/MTP: la seconda sezione riguarda la possibilità di importare, editare, gestire, aggiungere e rimuovere GCPs/MTPs/Control Points
  • GCP/MTP editor: con questo pannello possiamo gestire l'individuazione dei marker direttamente sulle immagini o all'interno del progetto

Il programma offre la possibilità di lavorare sia con il raycloud al termine dello step 1, oppure con l'editor base prima dello step 1.

Se abbiamo acquisito le nostre coordinate tramite un ricevitore GNSS, avremo ottenuto dei GCP con coordinate geolocalizzate in un sistema conosciuto. Poiché il nostro APR aggiunge alle immagini i tag di latitudine e longitudine, stiamo lavorando all'interno di un progetto che prevede che tanto le immagini quanto i GCP siano geolocalizzati. In questo caso il metodo di aggiunta dei GCP consigliato è il seguente:

  • Dopo aver misurato i GCP ed esportati dallo strumento nel formato compatibile con Pix4D, all'interno della tabella GCP seleziono importa GCP. La finestra che si apre mi dà la possibilità di selezionare tra formato file X, Y, Z oppure Y, X, Z, a seconda che nel file per ogni punto sia indicata prima la latitudine oppure la longitudine.
  • Avendo già processato lo step 1, possiamo procedere con raycloud a marcare i GCP all'interno della nostra nuvola. Dal pannello GCP/MTP Editor clicchiamo dunque su Editor raycloud

Affinché il modello sia scalato, ruotato e geolocalizzato correttamente, sono necessari almeno 3 GCP. Per ricavare un buon modello, è richiesto un numero minimo di GCP tra 5 e 10. Il nostro consiglio è si valutare il numero di GCP in base alla dimensione del progetto, laddove ne bastano 6 e quando invece ne sono necessari 15. Ogni GCP ben localizzato aumenterà la precisione e l'accuratezza del progetto.

Aerofotogrammetria da drone e Pix4Dmapper: editor raycloud per GCP/MTP

L'interfaccia del programma cambierà per entrare nell'editor raycloud. Sulla sinistra si apre il pannello layer, che contiene al suo interno tutti i dati calcolati dal programma. Espandiamo la voce Tie Points e di seguito la voce GCP/MTP: questa voce contiene l'elenco dei GCP/MTP che abbiamo caricato in precedenza. Facciamo clic sul primo GCP, nel nostro caso 9001 (7).

A questo punto nella parte destra dell'interfaccia si aprirà il pannello proprietà con le due sezioni "Selezione" e "Immagini": nella prima sezione saranno indicate le proprietà del GCP, quali ad es. tipologia, coordinate, stima dell'errore, etc.; nella seconda sezione sono listate tutte le immagini sulle quali il GCP è visibile. Quando sull'immagine la posizione del GCP è stimata, esso appare con un cerchio blu con un punto al centro: viene così rappresentata la proiezione delle coordinate su quell'immagine.

Ognuna delle immagini può essere navigata con i soliti comandi del pan, dello zoom, etc. tramite il tasto sinistro premuto o la rotella del mouse. Quando abbiamo individuato la giusta posizione del nostro marker o punto notabile a terra, con un clic sinistro del mouse piazziamo il GCP sull'immagine, non più con una posizione stimata ma ora con una posizione "certa": ora il GCP sull'immagine assumerà la forma di un cerchio con croce gialla al centro. Eseguiamo questa operazione in una seconda immagine, e vedremo apparire una croce verde su tutte le immagini interessate dal GCP. La croce verde rappresenta la riproiezione stimata delle coordinate 3D del GCP dipendente dalla posizione manualmente accertata del GCP.

Se su una immagine vedete apparire un cerchio rosa, vuol dire che la posizione di quel punto è errata e dovete procedere immediatamente alla sua correzione.

Fatto questo, nel pannello selezione clicchiamo sul bottone Marcatura automatica: il programma si occuperà per noi di individuare la corretta posizione del GCP su tutte le altre immagini sfruttando un algoritmo di correlazione automatica basata sul colore.

Qualora siano rimaste delle immagini che presentano soltanto una croce verde senza cerchio e croce gialle, si proceda a verificare se la croce verde indica una posizione corretta (nessun'altra operazione è richiesta) oppure una posizione scorretta, al che sarà necessario individuare il GCP manualmente su più immagini.

Quando la croce verde sarà nel posto corretto in tutte le immagini, nel pannello selezione clicchiamo su Applica. Non resta che procedere a ripetere tutti questi step per tutti i GCP che abbiamo caricato nel progetto.

Aerofotogrammetria da drone e Pix4Dmapper: proprietà GCP

Riottimizzare il progetto

Siamo finalmente pronti per valorizzare questo lavoro attraverso il comando da menu Elaborazione --> Riottimizza.

Questo comando procederà a riottimizzare i parametri interni ed esterni della camera, e di conseguenza la ricostruzione 3D, basandosi ora sui GCP, ovvero su coordinate certe.

Bisogna ricordare che questo processo è disponibile soltanto al termine dello step 1 e qualora siano stati aggiungi GCP o effettuate altre operazioni che possano influenzare la correttezza della ricostruzione. Va anche ricordato che questo processo cancella lo step 1 (perché lo rifà da capo), cancella l'eventuale report generato e cancella gli eventuali step 2 e 3 che fossero stati processati. Qualora si volesse generare un nuovo Report al termine del processo riottimizza, da menu Elaborazione --> Genera quality report.

Aerofotogrammetria da drone e Pix4Dmapper: processo riottimizza

Bene, anche oggi siamo giunti alla conclusione di questa puntata. Finora abbiamo visto come caricare le immagini, allinearle, processarle, inserire i GCP che ci saranno utili per la correzione metrica del nostro progetto. Infine riprocessare lo step 1 per applicare la correzione metrica al progetto.

Nel prossimo appuntamento vedremo come generare la nuvola di punti densa e partendo da questa generare i prodotti derivati, a cominciare dalla mesh 3D texturizzata.

Ricorda che lavoriamo al fianco dei professionisti per collaborare con loro nella perfetta riuscita dei loro progetti: se sei alle prime armi, vuoi migliorare la resa dei tuoi elaborati o semplicemente sfruttare la nostra conoscenza nel campo per i tuoi progetti, non esitare a contattarci con il form sottostante.

Contattaci

Legend
  1. Tuo nome (required)
  2. Tua email (richiesto)
  3. Oggetto
  4. Tuo messaggio
  5. Autorizzo al trattamento dei dati contenuti nel presente modulo, inclusi quelli personali D.Lgs. 196/2003 e art. 13 GDPR 679/16, per le finalità descritte, in accordo alla Privacy Policy che dichiaro di aver letto* (richiesto)

* Required

Nessuno dei dati inseriti nel form e inviati verrà conservato sul server o all'interno di questa piattaforma.

[wpgdprc "By using this form you agree with the handling of your data by this website."]

Posted by Archeo Staff in Archeologia, 0 comments

HOW TO: aerofotogrammetria con drone e Pix4Dmapper. Introduzione

Aerofotogrammetria con drone e Pix4Dmapper

La fotogrammetria, letteralmente "misurare con la luce" (dal greco), è una tecnica di rilevamento che consente l'acquisizione 3D ovvero le caratteristiche geometriche di un oggetto attraverso il processamento congiunto di 2 o più immagini che lo ritraggono da posizioni differenti.

Per tutto ciò che viene dopo questo incipit rimandiamo alla prima puntata di questo tutorial: questa serie di HOW TO sull'aerofotogrammetria con drone ha una base comune nella storia e nella tecnica di acquisizione delle immagini, essendo il software solo la parte che entra al momento dell'elaborazione del dato. Ripartiremo pertanto direttamente dallo step 5.

HOW TO: aerofotogrammetria con drone e Agisoft Photoscan. Introduzione

Pix4Dmapper workflow

Configurazione di Pix4Dmapper Discovery

La versione demo di Pix4Dmapper è chiamata Discovery: include tutte le caratteristiche della versione completa, permettendoti di apprendere da subito le funzionalità di Pix4Dmapper. Le uniche limitazioni riguardano il blocco dell'esportazione e la disabilitazione della generazione dell'ortofoto. Disponibile solo per Windows a 64 bit.

Al momento in cui scriviamo, la versione disponibile è Pix4D Desktop 4.2.26 rilasciata il 13 aprile. A differenza di Photoscan, la filosofia di Pix4D è diversa: il software si divide in moduli, che sono 4, ognuno con specifici parametri per applicazioni determinate. Pix4Dmapper si occupa di mappatura; Pix4Dbim si occupa di documentare il costruito a fini BIM; Pix4Dag è pensato per l'agricoltura di precisione, ed è ottimizzato per camere multispettrali; Pix4Dmodel è dedicato alla generazione di modelli 3D da condividere online. Ogni software ha dunque differenti potenzialità, ed è possibile acquistarlo sia in forma perpetua, che con una sorta di noleggio che può essere sia mensile che annuale. Esiste anche in questo caso la versione Educational, ad un prezzo scontato.

Per scaricare il programma è necessario registrarsi sul portale di Pix4D: le credenziali saranno necessarie anche per attivare il software:

Una volta scaricato il software, installiamolo e avviamo l'applicazione. Poiché nel vostro account non avete registrato nessun acquisto, il software avviserà di essere in modalità Discovery. Se è la prima volta che utilizzate il programma, è possibile attivare la versione Trial per 15 giorni, che vi offre funzionalità complete del programma.

Aerofotogrammetria con drone e Pix4Dmapper Discovery
Pix4Dmapper
Professional drone-based mapping, purely from images
260+iva
1 mese

Noleggia Pix4Dmapper da utilizzare per 30 giorni consecutivi!

Desktop + Cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un mese!

Licenza per 2 PC

Pix4Dmapper
Professional drone-based mapping, purely from images
2600+iva
1 anno

Noleggia Pix4Dmapper da utilizzare per 12 mesi consecutivi!

Desktop + Cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 2 PC

Pix4Dmapper
Professional drone-based mapping, purely from images
6500+iva
sempre

Acquista la licenza Permanente di Pix4Dmapper!

Desktop + Cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 2 PC

Pix4Dbim
Documenting and measuring construction sites from an aerial perspective
399+iva
1 mese

Noleggia Pix4Dbim da utilizzare per 30 giorni consecutivi!

Desktop + cloud (elaborazione controllata)

Supporto e Aggiornamenti inclusi per un mese!

Licenza per 2 PC

Pix4Dbim
Documenting and measuring construction sites from an aerial perspective
3990+iva
1 anno

Noleggia Pix4Dbim da utilizzare per 12 mesi consecutivi!

Desktop + cloud (elaborazione controllata)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 2 PC

Pix4Dbim
Documenting and measuring construction sites from an aerial perspective
7900+iva
sempre

Acquista la licenza Permanente di Pix4Dbim!

Desktop + cloud (elaborazione controllata)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 2 PC

Pix4Dag
Drone mapping software for precision agriculture
129+iva
1 mese

Noleggia Pix4Dag da utilizzare per 30 giorni consecutivi!

Desktop + cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un mese!

Licenza per 1 PC

Pix4Dag
Drone mapping software for precision agriculture
1299+iva
1 anno

Noleggia Pix4Dag da utilizzare per 12 mesi consecutivi!

Desktop + cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 1 PC

Pix4Dag
Drone mapping software for precision agriculture
2890+iva
sempre

Acquista la licenza Permanente del software Pix4Dag!

Desktop + cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 1 PC

Pix4Dmodel
Shareable 3D models from drone images
49+iva
1 mese

Noleggia Pix4Dmodel da utilizzare per 30 giorni consecutivi!

Desktop + cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un mese!

Licenza per 1 PC

Pix4Dmodel
Shareable 3D models from drone images
499+iva
1 anno

Noleggia Pix4Dmodel da utilizzare per 12 mesi consecutivi!

Desktop + cloud (elaborazione automatica)

Supporto e Aggiornamenti inclusi per un anno!

Licenza per 1 PC

Aerofotogrammetria step 5: processamento di immagini

Pix4Ddiscovery si avvia con un'interfaccia neutra che presenta la possibilità di avviare un nuovo progetto, caricare un progetto demo dal sito di Pix4D, aprirne uno esistente, oppure cliccare sui progetti più recenti elaborati con il software. Come dice la didascalia stessa dell'icona, cliccando su Nuovo progetto... si avvierà la procedura guidata per creare un nuovo progetto.

La schermata che si apre richiede che vengano scelti un nome, una cartella di salvataggio e un tipo per il nuovo progetto, che consiste o nella scelta di un nuovo progetto o nella possibilità di unificare progetti esistenti. Inseriti i dati richiesti procediamo su successivo, laddove viene richiesto di aggiungere i dati da elaborare. Possiamo selezionare le immagini, selezionare una cartella (a quel punto il software caricherà tutte le immagini contenute nella cartella), o anche un video (il programma di occuperà di estrarre i frame a passo definito). Scelti i nostri dati vedremo l'elenco di quanto il software andrà ad elaborare: possiamo premere su successivo.

La schermata che si attiva ora è molto importante: qualora una, più o tutte le immagini contengano nel dato EXIF le proprietà di latitudine e longitudine, il software riconoscerà i valori, indicando anche a quale Datum appartengono le coordinate. Il Datum è un sistema geodetico che descrive in termini matematici la superficie della Terra. Poiché il nostro pianeta non è uno sferoide ma un geoide, avere a disposizione soltanto le 2 coordinate non vi dice dove vi trovate, poiché è necessario sapere in quale Datum sono espresse, dal momento che esistono vari Datum a seconda delle esigenze. Nel caso dei dati ottenuti da droni, si parla di geodesia satellitare con datum tridimensionale a orientamento globale, ovvero valido per tutta la Terra.

I dati EXIF riportano anche il modello di camera che ha scattato le foto, e anche questo può essere riconosciuto dal software, il quale associerà le immagini ad un modello di camera precaricato, di cui cioè è stato creato un profilo standard. Nel nostro caso il software già sa che, avendo noi acquisito i dati con un Phantom 4, il modello di camera è FC330 con dimensione immagini di 4000x3000, una determinata dimensione del sensore e predefinite distorsioni radiali e tangenziali, che sono i valori necessari a risolvere le equazioni di collinearità per il matching automatico descritte nella prima puntata di questa serie. Possiamo procedere con successivo.

Aerofotogrammetria con drone e Pix4Dmapper: caricamento immagini

Al Datum che ci descrive la superficie terrestre bisogna abbinare un sistema di coordinate, che consente di definire la posizione di un punto, ovvero geolocalizzare. La schermata che si è ora aperta vi permette di selezionare il sistema di coordinate di output: il software è tendenzialmente in grado di riconoscerlo da solo sulla base delle coordinate di latitudine e longitudine presenti nei dati EXIF. Per risolvere inoltre la posizione sopra la superficie terrestre, viene utilizzato un modello geopotenziale, ovvero un modello che misura e calcola gli effetti del campo gravitazionale.

I droni DJI tendenzialmente utilizzano il modello EGM96, che infatti il software riconosce indicandovi che state lavorando con Datum WGS84, con coordinate UTM zone 32N e MSL (Mean Sea Level) EGM96. Questi dati andranno armonizzati con i dati ottenuti da strumentazione terrestre di tipo GNSS, con i quali verranno raccolti i valori GCP per la correzione metrica del progetto.

Cliccando su successivo si arriva all'ultima schermata del progetto, nella quale dovete selezionare le Opzioni di elaborazione del modello.

Qui il programma offre una serie di impostazioni predefinite che possono essere utili per pianificare velocemente la missione con parametri adeguati allo scopo: nulla vieta che si possano cambiare successivamente, ma è una buona base di partenza, soprattutto per chi è agli inizi. Abbiamo 3 categorie: Standard, Rapida e Avanzata. La Standard comprende la generazione di mappe e modelli 3D e un progetto di agricoltura di precisione con camera multispettrale; la Rapida prevede gli stessi progetti ma, come dice il nome, con parametri di risoluzione bassi per privilegiare la velocità di calcolo, ottimi ad esempio quando sul campo si vuole un rapido controllo del lavoro fatto; Avanzata, che prevede elaborazioni professionali nel campo dell'agricoltura di precisione e del rilievo con termocamere (profili basati su Flir Tau 2 e thermoMAP). Cliccando sulle varie voci nel pannello di sinistra si apriranno in quello di destra i rispettivi parametri, con indicazioni sulla tipologia di scena, output generati di esempio, indicazioni su qualità e velocità di elaborazione.

In basso a destra della finestra è presente l'opzione Inizia elaborazione adesso: flaggandola e cliccando su fine il programma elaborerà immediatamente con i parametri prescelti, oppure si può accedere al pannello principale per ulteriori impostazioni.

Aerofotogrammetria con drone e Pix4Dmapper: opzioni di elaborazione

Aerofotogrammetria con drone e Pix4Dmapper: opzioni di elaborazione

L'interfaccia di Pix4Ddiscovery si presenta spartana: sulla colonna di sinistra, la toolbar di vista, con la quale muoversi tra i vari dati elaborati. In alto la consueta barra di menu con tutti i comandi, che sovrasta la barra degli strumenti dove da notare sono l'editor di proprietà immagine e la finestra per la gestione dei GCP, dove andremo a inserire i punti per la correzione metrica acquisiti con strumentazione terrestre.

In basso troviamo il pannello di elaborazione: sono già checkati perché selezionati da un predefinito le task 1. Elaborazione Iniziale e 2. Nuvola di Punti e Mesh. In questo modo, avviando l'elaborazione, il programma si preoccuperà di arrivare al modello 3D finito senza altre attività da parte dell'utente. Per ora teniamo selezionata soltanto l'attività 1.

Al centro, vediamo invece aprirsi una vista satellitare con una serie di punti rossi: questi ultimi rappresentano le coordinate geolocalizzanti delle foto così come acquisite dal drone e salvate nei dati EXIF. Il software fornisce subito la vista di dove si è svolto in lavoro, ed è possibile cambiare tra vista mappa e vista appunto satellitare. Una funzione molto comoda che facilita il lavoro d'inquadramento del volo e consente di capire subito, ancor prima di elaborare il progetto, se nel nostro piano di volo qualcosa è andato storto e dove intervenire immediatamente per "tappare il buco".

Aerofotogrammetria con drone e Pix4Dmapper: interfaccia

Quando verrà avviata l'elaborazione, ogni pallino rosso sulla mappa si colora di verde, ad indicare che la prima fase di ricerca tie points è stata completata per quell'immagine. In seguito ogni pallino verde cambierà colore in un verde più chiaro a indicare che la fase di calibrazione è stata completata per quell'immagine. Al termine dell'elaborazione iniziale il programma genera un dettagliato report che, se letto attentamente, è in grado di fornirvi numerose indicazioni sulla qualità dell'acquisizione e del dato processato. Data la complessità del documento, rimando il lettore all'apposito Quality Report Help redatto dal supporto di Pix4D.

Prima di avviare però la fase 1, scopriamo qualcosa in merito ai parametri di elaborazione, premendo sul pulsante Opzioni di Elaborazione nell'angolo in basso a sinistra, evidenziato da un ingranaggio. Nella finestra che si apre, andiamo subito a cliccare in basso sul check della voce Avanzate per attivare le tab con i parametri appunto avanzati.

Il primo pannello è quello Generale: offre le opzioni di base per elaborare le immagini. La scelta è fra completa, rapida e personalizzata:

Aerofotogrammetria con drone e Pix4Dmapper: elaborazione iniziale

Completa imposta automaticamente l'immagine alla sua risoluzione originale; Rapida imposta automaticamente l'immagine alla sua risoluzione più bassa; Personalizzata vi consente di scegliere tra 5 parametri, che vanno da dimensione doppia dell'immagine fino ad un'immagine scalata a 1/8 della sua dimensione originale. Naturalmente, più pixel da analizzare più tie points possono essere estratti, a fronte tuttavia di un maggior tempo di analisi. L'opzione doppia è consigliata per immagini piccole (ad es. se avete estratto dei frame da un video FullHD), l'opzione 1/2 per progetti che contengono centinaia di immagini, le opzioni 1/4 e 1/8 sono consigliate per progetti con migliaia di immagini che abbiano tra loro un elevatissimo grado di sovrapposizione.

Il secondo pannello riguarda la corrispondenza tra immagini: Pix4D vi offre l'opportunità di aiutare il software selezionando alcune opzioni che lo aiutino a capire come è stato catturato il set di dati, permettendo una sorta di previsione delle coppie. Qui troviamo due aree: la prima è Matching coppia di immagini, che determinare come le coppie di immagini saranno accoppiate, la seconda è Strategia di Matching, che vi consente di determinare come le immagini saranno accoppiate.

Aerofotogrammetria con drone e Pix4Dmapper: elaborazione iniziale corrispondenza

Tra le opzioni troviamo Griglia aerea o corridoio, se le vostre immagini sono state ottenute da un volo automatico impostato su griglia o su percorso; Volo libero o terrestre, ideale per percorsi non predefiniti (tra questi rientra anche il volo circolare attorno ad un edificio) oppure per le riprese di fotogrammetria terrestre; Personalizzato, qualora nessuna delle due precedenti opzioni restituisca un risultato soddisfacente, dove l'utente ha la possibilità di scegliere tra differenti parametri. Il nome dei singoli parametri è autoesplicante, aggiungiamo pertanto una nota soltanto sull'opzione Usa MTP, che indica che il matching tra immagini verrà effettuato basandosi su Tie Points inseriti manualmente, ed eventualmente quante immagini possono essere accoppiate tramite un dato MTP.

L'ultima opzione riguarda la corrispondenza geometricamente verificata: rallenta molto il matching ma risulta estremamente robusto. In pratica potete dire al software di tenere conto della posizione della camera e non soltanto del contenuto: opzione da settare sempre quando si svolgono missioni che prevedano un'eccessiva quantità di features similari tra immagini che potrebbero ingannare il software. È il caso tipico del campi agricoli, ma anche facciate di palazzi ripetitive con la loro sequenza di finestre sempre uguali: in tal modo si eviteranno accoppiamenti geometricamente irrealistici perché la posizione GPS dell'immagine forzerà il programma a tenerla al suo posto effettivo.

Infine l'ultimo pannello che riguarda la calibrazione: il primo parametro è il Numero di keypoint marcati, per il quale potete scegliere se lasciar decidere al software o dargli un numero massimo di punti chiave da estrarre; il secondo è la Calibrazione, con il quale indicare come i parametri esterni e interni della camera saranno ottimizzati; con Rematch potete dire al programma di effettuare un secondo passaggio per aggiungere ulteriori match oltre quelli già trovati (l'opzione automatico lo consentirà solo per progetti con meno di 500 immagini); Pre-processing per eliminare il cielo vale soltanto con i droni Parrot Bebop; da ultimo con Esportazione potete indicare al software di salvare una copia delle immagini "corrette" utilizzando i parametri di correzione della distorsione individuati.

Aerofotogrammetria con drone e Pix4Dmapper: elaborazione iniziale calibrazione

Due righe in più sul Metodo di calibrazione. Consente tre scelte: Standard è quella predefinita; alternativa è ottimizzata per immagini nadirali geolocalizzate: non può contenere oltre il 5% di immagini oblique e deve contenere almeno il 75% di immagini con coordinate GPS (consigliata ad es. per la mappatura di campi agricoli, dove si verificano le condizioni di un basso livello di texture e un terreno piatto); infine geolocalizzazione accurata e orientamento è ottimizzata per progetti che contengano immagini con geolocalizzazione e orientamento molto accurati.

Possiamo affidarci ad un template predefinito, oppure giocare con una serie di parametri trovando il nostro template, che può essere salvato per futuri progetti attraverso l'apposito comando in basso alla finestra. Questo template sarà poi richiamato quando avvierete un nuovo progetto nella prima schermata mostrata in precedenza. Clicchiamo su ok per uscire da questo pannello e finalmente possiamo avviare la nostra elaborazione del primo step. Pix4Ddiscovery consente il salvataggio del progetto, quindi potete salvarlo per la prossima puntata.

Per oggi siamo giunti alla conclusione di questa puntata. La prossima volta procederemo con la creazione del modello, lavorando sui parametri previsti.

Ricorda che lavoriamo al fianco dei professionisti per collaborare con loro nella perfetta riuscita dei loro progetti: se sei alle prime armi, vuoi migliorare la resa dei tuoi elaborati o semplicemente sfruttare la nostra conoscenza nel campo per i tuoi progetti, non esitare a contattarci con il form sottostante.

Legend
  1. Tuo nome (required)
  2. Tua email (richiesto)
  3. Oggetto
  4. Tuo messaggio
  5. Autorizzo al trattamento dei dati contenuti nel presente modulo, inclusi quelli personali D.Lgs. 196/2003 e art. 13 GDPR 679/16, per le finalità descritte, in accordo alla Privacy Policy che dichiaro di aver letto* (richiesto)

* Required

Nessuno dei dati inseriti nel form e inviati verrà conservato sul server o all'interno di questa piattaforma.

[wpgdprc "By using this form you agree with the handling of your data by this website."]

Posted by Archeo Staff in Droni, 0 comments